Patents by Inventor Pascaline Harrison Tran

Pascaline Harrison Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090136401
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%. Other embodiments include one or more oxidatively active halides of a nonoxidative metal dispersed on sorbent substrate particles mixed with activated carbon in an amount up to 30% by weight.
    Type: Application
    Filed: December 5, 2008
    Publication date: May 28, 2009
    Applicant: BASF Catalysts LLC
    Inventors: Xiaolin David Yang, Pascaline Harrison Tran, Lawrence Shore
  • Publication number: 20090081092
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. Embodiments include brominated sorbent substrate particles having a carbon content of less than about 10%.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Inventors: Xiaolin David Yang, Pascaline Harrison Tran, Lawrence Shore
  • Patent number: 7410626
    Abstract: The invention pertains to a layered ammonia oxidation catalyst. The layered catalyst causes ammonia to be selectively oxidized in the presence of an oxidant such as air, while minimizing the formation of nitrogen oxides (NOx). The layered catalyst comprises a refractory oxide support such as gamma alumina upon which a platinum component is deposited and a vanadia component is deposited on the platinum. The catalyst is preferably disposed on a substrate such as a metal foil whose surface contains a “herringbone” pattern.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: August 12, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Pascaline Harrison Tran, James Mon-Her Chen, Gerard Diomede Lapadula, Marc Thomas Blute
  • Patent number: 7393511
    Abstract: A process is described that removes by oxidation the excess ammonia (NH3) gas from flue gases that have been subjected to selective catalytic reduction (SCR) of oxides of nitrogen (NOx) by ammonia injection. The inventive process incorporates a secondary catalyst of precious metal and vanadia on a metal oxide such as titania to catalyze the oxidation of both ammonia and carbon monoxide (CO) while maintaining sulfur dioxide (SO2) levels.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: July 1, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Pascaline Harrison Tran, Gerard Diomede Lapadula, Xinsheng Liu
  • Patent number: 7378366
    Abstract: A catalyst for the oxidation of volatile organic compounds and carbon monoxide comprising manganese and alumina, such catalyst having been impregnated with a phosphorus compound. The presence of the phosphorus compound results in a significant oxidative conversion of both the volatile organic compounds and the carbon monoxide. The catalyst is especially useful for treating gaseous streams that emanate from industrial sources, such as wood pulp manufacturing plants. The manganese portion of the catalyst is preferably comprised of manganese compounds comprising a defect non-stoichiometric manganese oxide of the type ?-Mn3O4+x, wherein x has the value of 0.1?x?0.25 in respect to about 80 to about 95% of all manganese atoms, and manganese aluminate in respect to the balance of the manganese atoms. The alumina portion of the catalyst is preferably comprised of high temperature forms of alumina of the type comprising ?-Al2O3 and (?+?+?)-Al2O3.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 27, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Pascaline Harrison Tran, Howard Furbeck, Gerard D. Lapadula
  • Publication number: 20080112870
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueline S. Curran
  • Patent number: 7208128
    Abstract: A catalyst for the oxidation of volatile organic compounds and carbon monoxide comprising manganese and alumina, such catalyst having been impregnated with a phosphorus compound. The presence of the phosphorus compound results in a significant oxidative conversion of both the volatile organic compounds and the carbon monoxide. The catalyst is especially useful for treating gaseous streams that emanate from industrial sources, such as wood pulp manufacturing plants. The manganese portion of the catalyst is preferably comprised of manganese compounds comprising a defect non-stoichiometric manganese oxide of the type ?-Mn3O4+x, wherein x has the value of 0.1?x?0.25 in respect to about 80 to about 95% of all manganese atoms, and manganese aluminate in respect to the balance of the manganese atoms. The alumina portion of the catalyst is preferably comprised of high temperature forms of alumina of the type comprising ?-Al2O3 and (?+?+?)-Al2O3.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: April 24, 2007
    Assignee: Engelhard Corporation
    Inventors: Howard John Furbeck, Pascaline Harrison Tran, Gerard Diomede Lapadula