Patents by Inventor Patrick Courtis

Patrick Courtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135519
    Abstract: Technologies for determining the accuracy of three-dimensional models include a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to obtain a candidate three-dimensional model of the anatomical object, and to produce two-dimensional silhouettes of the candidate three-dimensional model. The circuitry is also to apply an edge detection algorithm to the two-dimensional images to produce corresponding edge images and to compare the two-dimensional silhouettes to the edge images to produce a score indicative of an accuracy of the candidate three-dimensional model.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 25, 2024
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Patent number: 11950786
    Abstract: An orthopaedic surgical instrument includes a customized patient-specific surgical instrument having a body. A cutting guide slot extends through the body. A pair of first arms extends posteriorly from the body. Each arm includes a first customized patient-specific negative contour configured to receive a portion of a first corresponding positive contour of one of a patient's femoral condyles. A second arm extends proximally from the body. The second arm has a second customized patient-specific negative contour configured to receive a portion of a second corresponding positive contour of an anterior surface of the patient's femur. A method of performing a surgical procedure is also disclosed.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: April 9, 2024
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: R. Patrick Courtis, Francis Metelues
  • Patent number: 11944391
    Abstract: Surgical systems and methods are disclosed, including, in one embodiment, a system having a coupling system disposed on a distal end portion of a surgical robot arm that secures a navigation array to the robot arm in a plurality of different orientations. The system further includes a navigation system configured to determine a precise location of the distal end portion by measuring a precise location of the navigation array by visually observing the navigation array, receiving a location of the coupling system via one or more encoders in the robot arm, determining the orientation of the navigation array relative to the robot arm based on the visual observation of the navigation array and the received location of the coupling system, and determining the precise location of the distal end portion of the surgical robot arm based on a known spatial relationship between the distal end portion and the coupling system.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 2, 2024
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Robert Brik, William J. Frasier, Marc Puls, Richard Patrick Courtis
  • Publication number: 20240081912
    Abstract: A model production device generates one or more contact bodies of a patient-specific surgical instrument model based on a parameterized model of a patient's bone. The parameterized model includes a predetermined number of polygons each having a predetermined position relative to the patient's anatomy. The parameterized model may be generated based on a three-dimensional model that was generated based on multiple images of the patient's bone. The model production device adds parametric fixed geometry to the patient-specific surgical instrument model based on the parameterized model and subtracts the three-dimensional model of the patient's bone from the patient-specific surgical instrument model. Each contacting body may be positioned at a high-confidence part of the parametric model, and the parametric fixed geometry may be positioned at a low-confidence part. A patient-specific surgical instrument may be manufactured based on the patient-specific surgical instrument model.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Shawnoah S. Pollock, Anwar Mohammed, Randy P. Mangen, Francis G. Metelues, R. Patrick Courtis, Luke J. Aram
  • Patent number: 11925426
    Abstract: Systems, methods, and devices are disclosed for surgical instruments, systems, and methods for preventing skiving of a drilling instrument during a robotic or robot-assisted surgery are disclosed. In one embodiment, a scan of a patient's anatomy can be performed to produce a model of the bone to be drilled into and analysis of the surface can determine if the curvature is such that, if a target trajectory for a bore were followed, skiving of the drilling instrument is likely. If so, an alternate anti-skiving trajectory can be determined. The anti-skiving trajectory of a bore differs from the target trajectory by at least one of entry point, diameter, axis, or depth.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: March 12, 2024
    Assignee: DePuy Synthes Products, Inc.
    Inventors: William J Frasier, Robert Brik, Richard Patrick Courtis, Tarik Yardibi, Marc Puls, Matias De La Fuente Klein, Lukas Theisgen, Manuel Vossel, Klaus Radermacher
  • Patent number: 11883220
    Abstract: Technologies for determining the spatial orientation of input imagery to produce a three-dimensional model includes a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to determine candidate values indicative of translation and rotation of the anatomical object in the two-dimensional images, and to produce, as a function of the obtained two-dimensional images and the candidate values, a candidate three-dimensional model of the anatomical object. The circuitry is also to determine a score indicative of an accuracy of the candidate three-dimensional model, to determine whether the score satisfies a threshold, and to produce, in response to a determination that the score satisfies the threshold, data indicating that the candidate three-dimensional model is an accurate representation of the anatomical object.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: January 30, 2024
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Patent number: 11819280
    Abstract: A model production device generates one or more contact bodies of a patient-specific surgical instrument model based on a parameterized model of a patient's bone. The parameterized model includes a predetermined number of polygons each having a predetermined position relative to the patient's anatomy. The parameterized model may be generated based on a three-dimensional model that was generated based on multiple images of the patient's bone. The model production device adds parametric fixed geometry to the patient-specific surgical instrument model based on the parameterized model and subtracts the three-dimensional model of the patient's bone from the patient-specific surgical instrument model. Each contacting body may be positioned at a high-confidence part of the parametric model, and the parametric fixed geometry may be positioned at a low-confidence part. A patient-specific surgical instrument may be manufactured based on the patient-specific surgical instrument model.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 21, 2023
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Shawnoah S. Pollock, Anwar Mohammed, Randy P. Mangen, Francis G. Metelues, R. Patrick Courtis, Luke J. Aram
  • Patent number: 11816822
    Abstract: Technologies for determining the accuracy of three-dimensional models include a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to obtain a candidate three-dimensional model of the anatomical object, and to produce two-dimensional silhouettes of the candidate three-dimensional model. The circuitry is also to apply an edge detection algorithm to the two-dimensional images to produce corresponding edge images and to compare the two-dimensional silhouettes to the edge images to produce a score indicative of an accuracy of the candidate three-dimensional model.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: November 14, 2023
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Publication number: 20230346338
    Abstract: An ultrasound probe for percutaneous insertion into an incision and related methods are disclosed herein, e.g., for imaging neural structures at a surgical site of a patient. An exemplary ultrasound probe can be a portable ultrasound probe configured to be passed percutaneously into an incision and can have an imaging region extending distally from a distal tip of the probe. In one embodiment the ultrasound probe can be a navigated portable ultrasound probe. The ultrasound probe can be connected to a computing station and configured to transmit images to the computing station for processing. In another embodiment, an ultrasound probe can be part of a network of sensors, including at least one external sensor, where the network of sensors is configured to transmit images to the computing station for processing. The computing station can process and display images to visualize and/or highlight neurological structures in an imaged region.
    Type: Application
    Filed: May 9, 2023
    Publication date: November 2, 2023
    Applicant: Medos International Sarl
    Inventors: Tarik Yardibi, Richard Patrick Courtis, Emir Osmanagic, Leonard Bryant Guffey, Christopher Robert Wagner, Joshua John Gibson, Alireza Mashal
  • Patent number: 11666304
    Abstract: An ultrasound probe for percutaneous insertion into an incision and related methods are disclosed herein, e.g., for imaging neural structures at a surgical site of a patient. An exemplary ultrasound probe can be a portable ultrasound probe configured to be passed percutaneously into an incision and can have an imaging region extending distally from a distal tip of the probe. In one embodiment the ultrasound probe can be a navigated portable ultrasound probe. The ultrasound probe can be connected to a computing station and configured to transmit images to the computing station for processing. In another embodiment, an ultrasound probe can be part of a network of sensors, including at least one external sensor, where the network of sensors is configured to transmit images to the computing station for processing. The computing station can process and display images to visualize and/or highlight neurological structures in an imaged region.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 6, 2023
    Assignee: MEDOS INTERNATIONAL SARL
    Inventors: Tarik Yardibi, Richard Patrick Courtis, Emir Osmanagic, Leonard Bryant Guffey, Christopher Robert Wagner, Joshua John Gibson, Alireza Mashal
  • Patent number: 11653933
    Abstract: Methods of designing and manufacturing a number of low-profile metallic customized, patient-specific orthopaedic surgical instruments are disclosed.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: May 23, 2023
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Daniel D. Fritzinger, R. Patrick Courtis
  • Publication number: 20230034101
    Abstract: A system may be configured to facilitate a medical procedure. Some embodiments may: acquire a scan corresponding to a region of interest (ROI); capture an image of a patient in real-time; identify, via a trained machine learning (ML) model using the acquired scan and the captured image, a Kambin's triangle; and overlay, on the captured image, a representation of the identified Kambin's triangle.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Tarik Yardibi, Raymond Parfett, R. Patrick Courtis, Emir Osmanagic
  • Publication number: 20230020249
    Abstract: Systems, methods, and devices are disclosed for surgical instruments, systems, and methods for preventing skiving of a drilling instrument during a robotic or robot-assisted surgery are disclosed. In one embodiment, a scan of a patient's anatomy can be performed to produce a model of the bone to be drilled into and analysis of the surface can determine if the curvature is such that, if a target trajectory for a bore were followed, skiving of the drilling instrument is likely. If so, an alternate anti-skiving trajectory can be determined. The anti-skiving trajectory of a bore differs from the target trajectory by at least one of entry point, diameter, axis, or depth.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: William J. Frasier, Robert Brik, Richard Patrick Courtis, Tarik Yardibi, Marc Puls, Matias De La Fuente Klein, Lukas Theisgen, Manuel Vossel, Klaus Radermacher
  • Publication number: 20220292663
    Abstract: Technologies for determining the accuracy of three-dimensional models include a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to obtain a candidate three-dimensional model of the anatomical object, and to produce two-dimensional silhouettes of the candidate three-dimensional model. The circuitry is also to apply an edge detection algorithm to the two-dimensional images to produce corresponding edge images and to compare the two-dimensional silhouettes to the edge images to produce a score indicative of an accuracy of the candidate three-dimensional model.
    Type: Application
    Filed: May 30, 2022
    Publication date: September 15, 2022
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Publication number: 20220233203
    Abstract: An orthopaedic surgical instrument includes a customized patient-specific surgical instrument having a body. The body has a bone-facing surface and an outer surface positioned opposite the bone-facing surface. The body includes a number of bone-contacting segments raised relative to the bone-facing surface. The bone-contacting segment include negative contours shaped to match corresponding positive contours of a patient's bone. The positive contours correspond to silhouette curves of a three-dimensional model of the patient's bone that correspond to contours of the patient's bone captured in images used to generate the model. The body further includes a number of surgical guides extending from the outer surface to the bone-contacting surface or the bone-facing surfaces. A method associated with the instrument is also disclosed.
    Type: Application
    Filed: April 18, 2022
    Publication date: July 28, 2022
    Inventors: James M. Rhodes, R. Patrick Courtis
  • Patent number: 11348216
    Abstract: Technologies for determining the accuracy of three-dimensional models include a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to obtain a candidate three-dimensional model of the anatomical object, and to produce two-dimensional silhouettes of the candidate three-dimensional model. The circuitry is also to apply an edge detection algorithm to the two-dimensional images to produce corresponding edge images and to compare the two-dimensional silhouettes to the edge images to produce a score indicative of an accuracy of the candidate three-dimensional model.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: May 31, 2022
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Patent number: 11304710
    Abstract: An orthopaedic surgical instrument includes a customized patient-specific surgical instrument having a body. The body has a bone-facing surface and an outer surface positioned opposite the bone-facing surface. The body includes a number of bone-contacting segments raised relative to the bone-facing surface. The bone-contacting segment include negative contours shaped to match corresponding positive contours of a patient's bone. The positive contours correspond to silhouette curves of a three-dimensional model of the patient's bone that correspond to contours of the patient's bone captured in images used to generate the model. The body further includes a number of surgical guides extending from the outer surface to the bone-contacting surface or the bone-facing surfaces. A method associated with the instrument is also disclosed.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: April 19, 2022
    Assignee: DePuy Synthes Products, Inc.
    Inventors: James M. Rhodes, R. Patrick Courtis
  • Publication number: 20220096157
    Abstract: A model production device generates one or more contact bodies of a patient-specific surgical instrument model based on a parameterized model of a patient's bone. The parameterized model includes a predetermined number of polygons each having a predetermined position relative to the patient's anatomy. The parameterized model may be generated based on a three-dimensional model that was generated based on multiple images of the patient's bone. The model production device adds parametric fixed geometry to the patient-specific surgical instrument model based on the parameterized model and subtracts the three-dimensional model of the patient's bone from the patient-specific surgical instrument model. Each contacting body may be positioned at a high-confidence part of the parametric model, and the parametric fixed geometry may be positioned at a low-confidence part. A patient-specific surgical instrument may be manufactured based on the patient-specific surgical instrument model.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: Shawnoah S. Pollock, Anwar Mohammed, Randy P. Mangen, Francis G. Metelues, R. Patrick Courtis, Luke J. Aram
  • Publication number: 20220022831
    Abstract: Technologies for determining the spatial orientation of input imagery to produce a three-dimensional model includes a device having circuitry to obtain two-dimensional images of an anatomical object (e.g., a bone of a human joint), to determine candidate values indicative of translation and rotation of the anatomical object in the two-dimensional images, and to produce, as a function of the obtained two-dimensional images and the candidate values, a candidate three-dimensional model of the anatomical object. The circuitry is also to determine a score indicative of an accuracy of the candidate three-dimensional model, to determine whether the score satisfies a threshold, and to produce, in response to a determination that the score satisfies the threshold, data indicating that the candidate three-dimensional model is an accurate representation of the anatomical object.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Shawnoah S. Pollock, R. Patrick Courtis
  • Publication number: 20220008137
    Abstract: Surgical systems and methods are disclosed, including, in one embodiment, a system having a coupling system disposed on a distal end portion of a surgical robot arm that secures a navigation array to the robot arm in a plurality of different orientations. The system further includes a navigation system configured to determine a precise location of the distal end portion by measuring a precise location of the navigation array by visually observing the navigation array, receiving a location of the coupling system via one or more encoders in the robot arm, determining the orientation of the navigation array relative to the robot arm based on the visual observation of the navigation array and the received location of the coupling system, and determining the precise location of the distal end portion of the surgical robot arm based on a known spatial relationship between the distal end portion and the coupling system.
    Type: Application
    Filed: March 25, 2021
    Publication date: January 13, 2022
    Inventors: Robert Brik, William J. Frasier, Marc Puls, Richard Patrick Courtis