Patents by Inventor Patrick Edward Hopkins

Patrick Edward Hopkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160102235
    Abstract: Thermal conductivity can be altered by applying an electric field to an antiferroelectric material or a pressure to a ferroelectric material, thereby inducing a phase transition. The materials have compositions close to a phase boundary separating the ferroelectric and antiferroelectric phases, such as PbZr1?xTixO3 (with x?0.08), Pb(NbxZrySnzTi1-y-z)O3, (Pb,La)(ZrySnzTi1-y-z)O3, NaNbO3, Bi0.5Na0.5TiO3, or AgNbO3. By inducing a phase transition using either an electric field or pressure, the resulting change in the thermal conductivity can be used to provide a thermal switch or a continuous thermal conductivity tuning element.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Inventors: Jon Ihlefeld, Patrick Edward Hopkins
  • Patent number: 9255347
    Abstract: A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 9, 2016
    Assignee: Sandia Corporation
    Inventors: Jon Ihlefeld, Patrick Edward Hopkins
  • Publication number: 20150144588
    Abstract: A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 28, 2015
    Inventors: Jon Ihlefeld, Patrick Edward Hopkins