Patents by Inventor Patrick J. Pinhero

Patrick J. Pinhero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8968827
    Abstract: A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100° C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: March 3, 2015
    Assignee: U.S. Department of Energy
    Inventors: Tammy L. Trowbridge, Alan K. Wertsching, Patrick J. Pinhero, David L. Crandall
  • Patent number: 8283619
    Abstract: Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: October 9, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Steven D. Novack, Dale K. Kotter, Patrick J. Pinhero
  • Patent number: 8071931
    Abstract: Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 6, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Steven D. Novack, Dale K. Kotter, Patrick J. Pinhero
  • Publication number: 20110293955
    Abstract: A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100° C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.
    Type: Application
    Filed: April 1, 2008
    Publication date: December 1, 2011
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Tammy L. Trowbridge, Alan K. Wertsching, Patrick J. Pinhero, David L. Crandall
  • Publication number: 20110277805
    Abstract: Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
    Type: Application
    Filed: July 8, 2011
    Publication date: November 17, 2011
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Steven D. Novack, Dale K. Kotter, Patrick J. Pinhero
  • Publication number: 20100284086
    Abstract: Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may associated with the at least one resonance element.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 11, 2010
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Steven D. Novack, Dale K. Kotter, Patrick J. Pinhero
  • Patent number: 7286626
    Abstract: A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 23, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Ronald E. Mizia, Richard N. Wright, William D. Swank, Tedd E. Lister, Patrick J. Pinhero