Patents by Inventor Patrick L. Hagans

Patrick L. Hagans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040126630
    Abstract: The invention is a method of using a temporary dilute surfactant water solution to enhance mass transport in a fuel cell (10) that generates electrical current from hydrogen containing reducing fluid and oxygen containing oxidant reactant streams. The method includes the steps of: a. directing the dilute surfactant water solution to flow through a cathode flow field (20) of a fuel cell (10); b. then removing the solution from the fuel cell (10); and, c. then directing flow of the reactant streams through the flow fields (12) (20). The temporary dilute surfactant water solution has a surface tension of not less than 50 dynes/cm. Flowing the temporary dilute surfactant water solution through the fuel cell (10) for a temporary, short duration improves mass transport of the cell (10) even after the solution is removed from the cell (10).
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Inventors: Emily A. Dykeman, Patrick L. Hagans, Leslie L. Van Dine
  • Patent number: 6709777
    Abstract: Recovery of PEM fuel cell performance is achieved by evacuating (61, 62) or by flowing water absorbing gas (46) through, or both, the fuel flow field (12, 13, 19, 20), the air flow field (25, 26, 30, 31), and the water flow field (36, 39), while resistance of the individual cells, or of the fuel cell stack, is measured; the dry out process is continued until the resistance of the cells (or the resistance per cell, measured across the fuel cell stack as a whole), has increased by at least 5 to 1 (preferably 10 to 1) over the normal resistance of the cells. The water absorbing gas may be air (23) or nitrogen (47); it may be at ambient temperature or heated (50).
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: March 23, 2004
    Assignee: UTC Fuel Cells, LLC
    Inventors: Patrick L. Hagans, Gennady Resnick
  • Publication number: 20030180586
    Abstract: Recovery of PEM fuel cell performance is achieved by evacuating (61, 62) or by flowing water absorbing gas (46) through, or both, the fuel flow field (12, 13, 19, 20), the air flow field (25, 26, 30, 31), and the water flow field (36, 39), while resistance of the individual cells, or of the fuel cell stack, is measured; the dry out process is continued until the resistance of the cells (or the resistance per cell, measured across the fuel cell stack as a whole), has increased by at least 5 to 1 (preferably 10 to 1) over the normal resistance of the cells. The water absorbing gas may be air (23) or nitrogen (47); it may be at ambient temperature or heated (50).
    Type: Application
    Filed: March 20, 2002
    Publication date: September 25, 2003
    Inventors: Patrick L. Hagans, Gennady Resnick
  • Publication number: 20030162063
    Abstract: A fuel cell system includes a fuel cell (1) having a water passage and passage for gas required for power generation, a first protection device (5, 10) which prevents freezing of water in the fuel cell by maintaining the temperature of the fuel cell (1), and a second protection device (11, 12) which prevents freezing of water in the fuel cell by discharging the water in the fuel cell (1). A controller (50) selects one of the first protection device (5, 10) and the second protection device (11, 12) as the protection device to be used when the fuel cell (1) has stopped, and the fuel cell (1) is protected from freezing of water by operating the selected protection device.
    Type: Application
    Filed: February 27, 2002
    Publication date: August 28, 2003
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Koudai Yoshizawa, Akihiro Iiyama, Shugo Higashi, Patrick L. Hagans
  • Patent number: 6569308
    Abstract: An electrode for electrochemical uses is made of a conductive metal mesh coated with diamond-like carbon or dirty diamond. The electrode may be used in electrochemical cell either as a cathode or as an anode, or can be used with an alternating current.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: May 27, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul M. Natishan, William E. O'Grady, Patrick L. Hagans, Brian R. Stoner
  • Publication number: 20020029977
    Abstract: An electrode for electrochemical uses is made of a conductive metal mesh coated with diamond-like carbon or dirty diamond. The electrode may be used in electrochemical cell either as a cathode or as an anode, or can be used with an alternating current.
    Type: Application
    Filed: July 25, 2001
    Publication date: March 14, 2002
    Inventors: Paul M. Natishan, William E. OGrady, Brian R. Stoner, Patrick L. Hagans
  • Patent number: 6267866
    Abstract: An electrode for electrochemical uses is made of a conductive metal mesh coated with boron-doped diamond. The electrode may be used in electrochemical reactions either as a cathode or as an anode, or can be used with an alternating current.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: July 31, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John W. Glesener, Paul M. Natishan, William E. O'Grady, Arthur A. Morrish, Brian R. Stoner, Patrick L. Hagans
  • Patent number: 5098789
    Abstract: Novel ceramic or metal-ceramic articles having a low friction surface are produced by a tribochemical method. The low friction surface is produced by wear scarring under high vacuum opposing, articulating ceramic or metal-ceramic surfaces until low friction is obtained. The invention is useful in the preparation of bearings for use in outer space.
    Type: Grant
    Filed: November 27, 1989
    Date of Patent: March 24, 1992
    Assignee: The Dow Chemical Company
    Inventors: Benjamin M. DeKoven, Patrick L. Hagans
  • Patent number: 5073461
    Abstract: Novel ceramic or metal-ceramic articles having an oxidized surface are produced by a tribochemical method. The oxidized surface is produced by initially wear scarring, under high vacuum, opposed, articulating ceramic or metal-ceramic surfaces and, thereafter, continuing the wear scarring in the presence of oxygen or air at less than atmospheric pressure. A method of welding ceramic or metal-ceramic articles is also disclosed.
    Type: Grant
    Filed: November 27, 1989
    Date of Patent: December 17, 1991
    Assignee: The Dow Chemical Company
    Inventors: Benjamin M. DeKoven, Patrick L. Hagans
  • Patent number: 4871526
    Abstract: A method of catalytic oxidation of organophosphonate esters includes introducing the organophosphonate esters in gaseous form into contact with a molybdenum catalyst and effecting such introduction in the presence of oxygen to cause the organophosphonate ester to be oxidized on the molybdenum catalyst surface. The process is preferably carried out at a temperature of at least 900.degree. K. in the presence of excess oxygen. A chemisorbed oxide coating or molybdenum oxide coating or both may be established on all or part of the molybdenum catalyst. Among the organophosphonate esters which may be oxidized in this manner are dimethyl methylphosphonate, diisopropyl methylphosphonate, diphenyl methylphosphonate, and other molecules with the structure: ##STR1## The catalytic oxidation results in emission of carbon monoxide and phosphorus oxides(s) without undesired buildup of carbonaceous or phosphorus overlayers on the Mo catalyst surface.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: October 3, 1989
    Assignee: University of Pittsburgh of the Commonwealth System of Higher Education
    Inventors: Vincent S. Smentkowski, Patrick L. Hagans, John T. Yates, Jr.
  • Patent number: 4767678
    Abstract: The invention is an oxalloy consisting essentially of about 5 to about 57 weight percent magnesium or aluminum and about 0.5 to about 10 weight percent of one or more alloying materials selected from the group consisting of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ga, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, and rare earths; and the remainder oxygen.The invention also includes a method for forming the above oxalloys and a substrate coated with the oxalloys of the present invention.
    Type: Grant
    Filed: February 18, 1986
    Date of Patent: August 30, 1988
    Assignee: The Dow Chemical Company
    Inventors: Ronald L. Yates, Patrick L. Hagans
  • Patent number: 4659629
    Abstract: A process is disclosed for the protection of magnesium based alloys containing aluminum by treatment with eutectic mixtures of fused salts to provide a corrosion resistant outer layer on the magnesium based alloy. A suitable fused salt mixture comprises urea and at least one of ammonium nitrate or ammonium nitrite. A magnesium based alloy is also disclosed comprising magnesium and aluminum having a corrosion resistant outer layer comprising magnesium oxide and aluminum oxide; the proportion of aluminum present in the outer layer being enriched in proportion to the amount present in the magnesium based alloy.
    Type: Grant
    Filed: November 25, 1985
    Date of Patent: April 21, 1987
    Assignee: The Dow Chemical Company
    Inventors: Charles D. Gartner, Patrick L. Hagans
  • Patent number: 4613386
    Abstract: The invention is an oxalloy consisting essentially of about 5 to about 57 weight percent magnesium or aluminum and about 0.5 to about 10 weight percent of one or more alloying materials selected from the group consisting of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ga, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, and rare earths; and the remainder oxygen.The invention also includes a method for forming the above oxalloys and a substrate coated with the oxalloys of the present invention.
    Type: Grant
    Filed: January 26, 1984
    Date of Patent: September 23, 1986
    Assignee: The Dow Chemical Company
    Inventors: Ronald L. Yates, Patrick L. Hagans
  • Patent number: 4569699
    Abstract: The invention is an improved method for depositing a chromite coating onto a magnesium-containing material comprising:contacting the magnesium-containing material with a solution at least containing chromite ions and silicate ions for a time sufficient to deposit a corrosion resistant coating onto said magnesium-containing material;wherein the concentration of chromite ions in the solution is from about 0.2 to about 1.2 moles per liter; the concentration of silicate ions is from about 0.1 to about 0.3 moles per liter; the pH of the solution is from about 1 to about 5; and the temperature of the solution is from about 25.degree. C. to about 80.degree. C.
    Type: Grant
    Filed: May 8, 1985
    Date of Patent: February 11, 1986
    Assignee: The Dow Chemical Company
    Inventor: Patrick L. Hagans