Patents by Inventor Patrick Macaulay

Patrick Macaulay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080108987
    Abstract: RF power is applied to a circular RF electrode cutting a side opening in a graft material of a main stent-graft in situ. As the side opening is formed by the applied RF power and the associated plasma discharge, the side opening is formed with a minimal application of force to the graft material. Further, the side opening is circular and has a fused edge.
    Type: Application
    Filed: November 7, 2006
    Publication date: May 8, 2008
    Applicant: Medtronic Vascular, Inc.
    Inventors: Walter Bruszewski, Patrick Macaulay
  • Publication number: 20080045996
    Abstract: Methods and apparatus for occluding blood flow within a blood vessel. In a first series of embodiments, the present invention comprises a plurality of embolic devices deployable through the lumen of a conventional catheter such that when deployed, said embolic devices remain resident and occlude blood flow at a specific site within the lumen of the blood vessel. Such embolic devices comprise either mechanical embolic devices that become embedded within or compress against the lumen of the vessel or chemical vaso-occlusive agents that seal off blood flow at a given site. A second embodiment of the present invention comprises utilization of a vacuum/cauterizing device capable of sucking in the lumen of the vessel about the device to maintain the vessel in a closed condition where there is then applied a sufficient amount of energy to cause the tissue collapsed about the device to denature into a closure.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Applicant: Medtronic Vascular, Inc.
    Inventors: Joshua Makower, J. Christopher Flaherty, Timothy Machold, Jason Whitt, Philip Evard, Patrick Macaulay, John Garibotto, Marc Jensen
  • Publication number: 20070021730
    Abstract: A transvascular system (10) for delivering a drug to a tissue region from a blood vessel, such as a coronary vein, includes a catheter (12) having a distal portion (26) with puncturing (14), orientation (16), drug delivery (62), and imaging elements (18). The puncturing element (14) is deployable for penetrating the vessel wall to access the tissue region. The orientation element (16), e.g. a “cage” including a plurality of struts (38) (40) and/or a radiopaque marker, has a predetermined relationship with the puncturing element (14), the imaging element (18) detecting the location of the orientation element (16) with respect to the tissue region to orient the puncturing element. The catheter (12) is percutaneously introducing into the vessel, the puncturing element (14) is oriented towards the tissue region, the puncturing element (14) is deployed to access the tissue region, and the drug is delivered to the tissue region.
    Type: Application
    Filed: August 15, 2006
    Publication date: January 25, 2007
    Applicant: Medtronic Vascular, Inc.
    Inventors: Christopher Flaherty, Joshua Makower, Philip Evard, Patrick Macaulay, Jason Whitt, Robert Colloton, K. MacFarlane
  • Publication number: 20060241342
    Abstract: Catheter devices, systems and methods for penetrating from one location within a patient's body to another location. An elongate catheter is insertable into a natural or man-made lumen within the body of a patient. A penetrator is advanceable from the catheter to a target location outside of the lumen in which the catheter is positioned. An optical imaging or tissue characterization apparatus (e.g., an optical coherence tomography apparatus) is useable to image the anatomy and/or sense variables within tissue so as to locate the target location relative to indicia of the trajectory on which the penetrator will advance from the catheter. The operator may then adjust the position and/or rotational orientation of the catheter such that when the penetrator is subsequently advanced, the penetrator will enter the target location.
    Type: Application
    Filed: March 12, 2004
    Publication date: October 26, 2006
    Applicant: MEDTRONIC TRANSVASCULAR, INC.
    Inventors: Patrick Macaulay, John Chang, Isaac Kim, Julia Vrany
  • Publication number: 20060184011
    Abstract: Magnetic resonance image (MRI) guided tissue penetrating catheters and their methods of use. One or more MRI apparatus (e.g., one or more coils) are positioned on or in a catheter device that includes a tissue penetrator that may be used to form a penetration tract from a body lumen in which the catheter is positioned to a target location outside of that body lumen. The MRI apparatus (e.g., coil(s)) is/are used in conjunction with an MRI imaging system to indicate the position and/or rotational orientation of the penetrating catheter within the subject's body.
    Type: Application
    Filed: April 14, 2006
    Publication date: August 17, 2006
    Applicant: Medtronic Vascular, Inc.
    Inventors: Patrick Macaulay, Asha Nayak
  • Publication number: 20060173440
    Abstract: Delivery catheters useable to deliver substances, articles or devices to target locations within the bodies of human or animal subjects. The delivery catheter generally comprises a catheter having a tissue penetrating distal tip member on the distal end and one or more delivery aperture(s) whereby a substance, article or device may be delivered through the lumen of the catheter body and out of the delivery aperture(s). In some applications, the substance delivery catheter is used in combination with a transluminal tissue penetrating catheter having a penetrator that is advanced to a first location. The delivery catheter is then advanced through (or over) the penetrator, through intervening tissue, to a desired target location.
    Type: Application
    Filed: April 14, 2006
    Publication date: August 3, 2006
    Applicant: Medtronic Vascular, Inc.
    Inventors: Theodore Lamson, Patrick Macaulay