Patents by Inventor Patrick Morrow

Patrick Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11658221
    Abstract: An apparatus including a circuit structure including a device stratum including a plurality of devices including a first side and an opposite second side; and a metal interconnect coupled to at least one of the plurality of devices from the second side of the device stratum. A method including forming a transistor device including a channel between a source region and a drain region and a gate electrode on the channel defining a first side of the device; and forming an interconnect to one of the source region and the drain region from a second side of the device.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Rishabh Mehandru, Aaron D. Lilak, Kimin Jun
  • Patent number: 11646352
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey
  • Patent number: 11640961
    Abstract: An integrated circuit structure comprises a lower device layer that includes a first structure comprising a plurality of PMOS transistors. An upper device layer is formed on the lower device layer, wherein the upper device layer includes a second structure comprising a plurality of NMOS transistors having a group III-V material source/drain region.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Ravi Pillarisetty, Jack T. Kavalieros, Aaron D. Lilak, Willy Rachmady, Rishabh Mehandru, Kimin Jun, Anh Phan, Hui Jae Yoo, Patrick Morrow, Cheng-Ying Huang, Matthew V. Metz
  • Publication number: 20230132053
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of non-planar transistors. An insulation structure is provided between channel, source, and drain regions of neighboring fins. The insulation structure is formed during back side processing, wherein at least a first portion of the isolation material between adjacent fins is recessed to expose a sub-channel portion of the semiconductor fins. A spacer material is then deposited at least on the exposed opposing sidewalls of the exposed sub-channel portion of each fin. The isolation material is then further recessed to form an air gap between gate, source, and drain regions of neighboring fins. The air gap electrically isolates the source/drain regions of one fin from the source/drain regions of an adjacent fin, and likewise isolates the gate region of the one fin from the gate region of the adjacent fin. The air gap can be filled with a dielectric material.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Aaron D. LILAK, Rishabh MEHANDRU, Patrick MORROW
  • Patent number: 11616056
    Abstract: An integrated circuit structure includes a first semiconductor fin extending horizontally in a length direction and including a bottom portion and a top portion above the bottom portion, a bottom transistor associated with the bottom portion of the first semiconductor fin, a top transistor above the bottom transistor and associated with the top portion of the first semiconductor fin, and a first vertical diode. The first vertical diode includes: a bottom region associated with at least the bottom portion of the first semiconductor fin, the bottom region including one of n-type and p-type dopant; a top region associated with at least the top portion of the first semiconductor fin, the top region including the other of n-type and p-type dopant; a bottom terminal electrically connected to the bottom region; and a top terminal electrically connected to the top region at the top portion of the first semiconductor fin.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Patrick Morrow, Anh Phan, Cheng-Ying Huang, Rishabh Mehandru, Gilbert Dewey, Willy Rachmady
  • Patent number: 11616015
    Abstract: Transistor cell architectures including both front-side and back-side structures. A transistor may include one or more semiconductor fins with a gate stack disposed along a sidewall of a channel portion of the fin. One or more source/drain regions of the fin are etched to form recesses with a depth below the channel region. The recesses may extend through the entire fin height. Source/drain semiconductor is then deposited within the recess, coupling the channel region to a deep source/drain. A back-side of the transistor is processed to reveal the deep source/drain semiconductor material. One or more back-side interconnect metallization levels may couple to the deep source/drain of the transistor.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Mauro J. Kobrinsky, Mark T. Bohr, Tahir Ghani, Rishabh Mehandru
  • Publication number: 20230087444
    Abstract: Integrated circuits including lateral diodes. In an example, diodes are formed with laterally neighboring source and drain regions (diffusion regions) configured with different polarity epitaxial growths (e.g., p-type and n-type), to provide an anode and cathode of the diode. In some such cases, dopants may be used in the channel region to create or otherwise enhance a PN or PIN junction between the diffusion regions and the semiconductor material of a channel region. The channel region can be, for instance, one or more nanoribbons or other such semiconductor bodies that extend between the oppositely-doped diffusion regions. In some cases, nanoribbons making up the channel region are left unreleased, thereby preserving greater volume through which diode current can flow. Other features include skipped epitaxial regions, elongated gate structures, using isolation structures in place of gate structures, and/or sub-fin conduction paths that are supplemental or alternative to a channel-based conduction path.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Nicholas A. Thomson, Ayan Kar, Benjamin Orr, Kalyan C. Kolluru, Nathan D. Jack, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Publication number: 20230089395
    Abstract: Integrated circuits including vertical diodes. In an example, a first transistor is above a second transistor. The first transistor includes a first semiconductor body extending laterally from a first source or drain region. The first source or drain region includes one of a p-type dopant or an n-type dopant. The second transistor includes a second semiconductor body extending laterally from a second source or drain region. The second source or drain region includes the other of the p-type dopant or the n-type dopant. The first source or drain region and second source or drain region are at least part of a diode structure, which may have a PN junction (e.g., first and second source/drain regions are merged) or a PIN junction (e.g., first and second source/drain regions are separated by an intrinsic semiconductor layer, or a dielectric layer and the first and second semiconductor bodies are part of the junction).
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Benjamin Orr, Nicholas A. Thomson, Ayan Kar, Nathan D. Jack, Kalyan C. Kolluru, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Publication number: 20230088578
    Abstract: Integrated circuits including lateral diodes. In an example, diodes are formed with laterally neighboring source and drain regions (diffusion regions) configured with different polarity epitaxial growths (e.g., p-type and n-type), to provide an anode and cathode of the diode. In some such cases, dopants may be used in the channel region to create or otherwise enhance a PN or PIN junction between the diffusion regions and the semiconductor material of a channel region. The channel region can be, for instance, one or more nanoribbons or other such semiconductor bodies that extend between the oppositely-doped diffusion regions. In some cases, nanoribbons making up the channel region are left unreleased, thereby preserving greater volume through which diode current can flow. Other features include skipped epitaxial regions, elongated gate structures, using isolation structures in place of gate structures, and/or sub-fin conduction paths that are supplemental or alternative to a channel-based conduction paths.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: INTEL CORPORATION
    Inventors: Nicholas A. Thomson, Ayan Kar, Benjamin Orr, Kalyan C. Kolluru, Nathan D. Jack, Patrick Morrow, Cheng-Ying Huang, Charles C. Kuo
  • Patent number: 11605556
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of non-planar transistors. An insulation structure is provided between channel, source, and drain regions of neighboring fins. The insulation structure is formed during back side processing, wherein at least a first portion of the isolation material between adjacent fins is recessed to expose a sub-channel portion of the semiconductor fins. A spacer material is then deposited at least on the exposed opposing sidewalls of the exposed sub-channel portion of each fin. The isolation material is then further recessed to form an air gap between gate, source, and drain regions of neighboring fins. The air gap electrically isolates the source/drain regions of one fin from the source/drain regions of an adjacent fin, and likewise isolates the gate region of the one fin from the gate region of the adjacent fin. The air gap can be filled with a dielectric material.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Patrick Morrow
  • Patent number: 11605565
    Abstract: Embodiments herein describe techniques for a semiconductor device including a first transistor stacked above and self-aligned with a second transistor, where a shadow of the first transistor substantially overlaps with the second transistor. The first transistor includes a first gate electrode, a first channel layer including a first channel material and separated from the first gate electrode by a first gate dielectric layer, and a first source electrode coupled to the first channel layer. The second transistor includes a second gate electrode, a second channel layer including a second channel material and separated from the second gate electrode by a second gate dielectric layer, and a second source electrode coupled to the second channel layer. The second source electrode is self-aligned with the first source electrode, and separated from the first source electrode by an isolation layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Willy Rachmady, Gilbert Dewey, Aaron Lilak, Kimin Jun, Brennen Mueller, Ehren Mannebach, Anh Phan, Patrick Morrow, Hui Jae Yoo, Jack T. Kavalieros
  • Publication number: 20230073078
    Abstract: An integrated circuit structure having a stacked transistor architecture includes a first semiconductor body (e.g., set of one or more nanoribbons) and a second semiconductor body (e.g., set of one or more nanoribbons) above the first semiconductor body. The first and second semiconductor bodies are part of the same fin structure. The distance between an upper surface of the first semiconductor body and a lower surface of the second semiconductor body is 60 nm or less. A first gate structure is on the first semiconductor body, and a second gate structure is on the second semiconductor body. An isolation structure that includes a dielectric material is between the first and second gate structures, and is on and conformal to a top surface of the first gate structure. In addition, a bottom surface of the second gate structure is on a top surface of the isolation structure, which is relatively flat.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Willy Rachmady, Sudipto Naskar, Cheng-Ying Huang, Gilbert Dewey, Marko Radosavljevic, Nicole K. Thomas, Patrick Morrow, Urusa Alaan
  • Patent number: 11594533
    Abstract: A device is disclosed. The device includes a first semiconductor fin, a first source-drain epitaxial region adjacent a first portion of the first semiconductor fin, a second source-drain epitaxial region adjacent a second portion of the first semiconductor fin, a first gate conductor above the first semiconductor fin, a gate spacer covering the sides of the gate conductor, a second semiconductor fin below the first semiconductor fin, a second gate conductor on a first side of the second semiconductor fin and a third gate conductor on a second side of the second semiconductor fin, a third source-drain epitaxial region adjacent a first portion of the second semiconductor fin, and a fourth source-drain epitaxial region adjacent a second portion of the second semiconductor fin. The device also includes a dielectric isolation structure below the first semiconductor fin and above the second semiconductor fin that separates the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Aaron Lilak, Patrick Morrow, Anh Phan, Ehren Mannebach, Jack T. Kavalieros
  • Patent number: 11594452
    Abstract: Embodiments of the present disclosure describe techniques for revealing a backside of an integrated circuit (IC) device, and associated configurations. The IC device may include a plurality of fins formed on a semiconductor substrate (e.g., silicon substrate), and an isolation oxide may be disposed between the fins along the backside of the IC device. A portion of the semiconductor substrate may be removed to leave a remaining portion. The remaining portion may be removed by chemical mechanical planarization (CMP) using a selective slurry to reveal the backside of the IC device. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Il-Seok Son, Colin T. Carver, Paul B. Fischer, Patrick Morrow, Kimin Jun
  • Patent number: 11594524
    Abstract: An apparatus including a circuit structure including a device stratum; one or more electrically conductive interconnect levels on a first side of the device stratum and coupled to ones of the transistor devices; and a substrate including an electrically conductive through silicon via coupled to the one or more electrically conductive interconnect levels so that the one or more interconnect levels are between the through silicon via and the device stratum. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum; forming one or more interconnect levels on a first side of the device stratum; removing a portion of the substrate; and coupling a through silicon via to the one or more interconnect levels such that the one or more interconnect levels is disposed between the device stratum and the through silicon via.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 28, 2023
    Assignee: Intel Corporation
    Inventors: Brennen K. Mueller, Patrick Morrow, Kimin Jun, Paul B. Fischer, Daniel Pantuso
  • Publication number: 20230046755
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 16, 2023
    Inventors: Rishabh MEHANDRU, Patrick MORROW, Ranjith KUMAR, Cory E. WEBER, Seiyon KIM, Stephen M. CEA, Tahir GHANI
  • Patent number: 11573798
    Abstract: Disclosed herein are stacked transistors with different gate lengths in different device strata, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, with two different device strata having different gate lengths.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert W. Dewey, Willy Rachmady, Rishabh Mehandru, Ehren Mannebach, Cheng-Ying Huang, Anh Phan, Patrick Morrow
  • Patent number: 11569238
    Abstract: Embodiments herein describe techniques for a semiconductor device including a memory cell vertically above a substrate. The memory cell includes a metal-insulator-metal (MIM) capacitor at a lower device portion, and a transistor at an upper device portion above the lower device portion. The MIM capacitor includes a first plate, and a second plate separated from the first plate by a capacitor dielectric layer. The first plate includes a first group of metal contacts coupled to a metal electrode vertically above the substrate. The first group of metal contacts are within one or more metal layers above the substrate in a horizontal direction in parallel to a surface of the substrate. Furthermore, the metal electrode of the first plate of the MIM capacitor is also a source electrode of the transistor. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: January 31, 2023
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Willy Rachmady, Gilbert Dewey, Kimin Jun, Hui Jae Yoo, Patrick Morrow, Sean T. Ma, Ahn Phan, Abhishek Sharma, Cheng-Ying Huang, Ehren Mannebach
  • Patent number: 11552104
    Abstract: Disclosed herein are stacked transistors with dielectric between channel materials, as well as related methods and devices. In some embodiments, an integrated circuit structure may include stacked strata of transistors, wherein a dielectric material is between channel materials of adjacent strata, and the dielectric material is surrounded by a gate dielectric.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: January 10, 2023
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Gilbert W. Dewey, Willy Rachmady, Rishabh Mehandru, Ehren Mannebach, Cheng-Ying Huang, Anh Phan, Patrick Morrow, Kimin Jun
  • Publication number: 20220415880
    Abstract: Substrate-less diode, bipolar and feedthrough integrated circuit structures, and methods of fabricating substrate-less diode, bipolar and feedthrough integrated circuit structures, are described. For example, a substrate-less integrated circuit structure includes a semiconductor structure. A plurality of gate structures is over the semiconductor structure. A plurality of P-type epitaxial structures is over the semiconductor structure. A plurality of N-type epitaxial structures is over the semiconductor structure. One or more open locations is between corresponding ones of the plurality of gate structures. A backside contact is connected directly to one of the pluralities of P-type and N-type epitaxial structures.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Ayan KAR, Kalyan KOLLURU, Nicholas THOMSON, Rui MA, Benjamin ORR, Nathan JACK, Mauro KOBRINSKY, Patrick MORROW, Chung-Hsun LIN