Patents by Inventor Patrick T. Hurley

Patrick T. Hurley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11569494
    Abstract: A method of making a positive electrode includes forming a slurry of particles using an electrode formulation, a diluent, and oxalic acid, coating the slurry on a collector and drying the coating on the collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water soluble polymer. The diluent consists essentially of water.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: January 31, 2023
    Assignee: CPS TECHNOLOGY HOLDINGS LLC
    Inventors: Qiang Luo, Junwei Jiang, Yongkyu Son, Bernhard M. Metz, Patrick T. Hurley
  • Patent number: 10766368
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: September 8, 2020
    Assignee: CPS TECHNOLOGY HOLDINGS LLC
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Publication number: 20190359063
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Application
    Filed: October 22, 2018
    Publication date: November 28, 2019
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Publication number: 20190054827
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Patent number: 10106038
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: October 23, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Patent number: 10014518
    Abstract: In one embodiment, a positive electrode is formed by a process that includes forming a slurry including particles dispersed within a liquid from a electrode formulation and the liquid such that the particles have a particle size distribution D50 of 15 microns or less, coating the slurry on a collector; and drying the coated collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water-soluble polymer. The liquid consists essentially of water or a mixture of water and an alcohol. When the liquid consists essentially of the mixture, the alcohol is present in an amount of less than 10% by weight, based on the weight of the slurry. When the liquid consists essentially of water, the slurry is formed from the electrode formulation, the liquid, and an arene-capped polyoxoethylene surfactant.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: July 3, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Junwei Jiang, Yongkyu Son, Bernhard M. Metz, Patrick T. Hurley, Qiang Luo, Kavi G. Loganathan
  • Publication number: 20150107093
    Abstract: A method of making a positive electrode includes forming a slurry of particles using an electrode formulation, a diluent, and oxalic acid, coating the slurry on a collector and drying the coating on the collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water soluble polymer. The diluent consists essentially of water.
    Type: Application
    Filed: July 28, 2014
    Publication date: April 23, 2015
    Inventors: Qiang Luo, Junwei Jiang, Yongkyu Son, Bernhard M. Metz, Patrick T. Hurley
  • Publication number: 20140186694
    Abstract: In one embodiment, a positive electrode is formed by a process that includes forming a slurry including particles dispersed within a liquid from a electrode formulation and the liquid such that the particles have a particle size distribution D50 of 15 microns or less, coating the slurry on a collector; and drying the coated collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water-soluble polymer. The liquid consists essentially of water or a mixture of water and an alcohol. When the liquid consists essentially of the mixture, the alcohol is present in an amount of less than 10% by weight, based on the weight of the slurry. When the liquid consists essentially of water, the slurry is formed from the electrode formulation, the liquid, and an arene-capped polyoxoethylene surfactant.
    Type: Application
    Filed: October 18, 2013
    Publication date: July 3, 2014
    Applicant: Johnson Controls Technology Company
    Inventors: Junwei Jiang, Yongkyu Son, Bernhard M. Metz, Patrick T. Hurley, Qiang Luo, Kavi G. Loganathan
  • Publication number: 20140186723
    Abstract: The present disclosure relates generally to the field of batteries and battery modules. More specifically, the present disclosure relates to battery cells that may be used in vehicular contexts, as well as other energy storage/expending applications. An electrolyte solution includes at least one ester solvent and a plurality of additives. In particular, the plurality of additives includes a cyclic carbonate-based additive, a sultone-based additive, and either a borate-based additive or an imide-based additive. The presently disclosed electrolyte solutions enable the manufacture of battery cells having a wide operating temperature range (e.g., between approximately ?30° C. and approximately 60° C.).
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: Johnson Controls Technology Company
    Inventors: Boutros Hallac, Patrick T. Hurley, Junwei Jiang, Zhenli Zhang
  • Publication number: 20140183939
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Application
    Filed: August 29, 2013
    Publication date: July 3, 2014
    Applicant: Johnson Controls Technology Comapny
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Patent number: 7553776
    Abstract: The present invention provides a method for preparing a silicon substrate and a silicon substrate having a silicon surface comprising a pattern of covalently bound monolayers. Each of the monolayers comprises an alkyne, wherein at least a portion of each monolayer is no more than about 5 molecules of the alkyne wide.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: June 30, 2009
    Assignee: Purdue Research Foundation
    Inventors: Jillian M. Buriak, Patrick T. Hurley
  • Patent number: 7091517
    Abstract: The present invention provides a method for preparing a silicon substrate and a silicon substrate having a silicon surface comprising a pattern of covalently bound monolayers. Each of the monolayers comprises an alkyne, wherein at least a portion of each monolayer is no more than about 5 molecules of the alkyne wide.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 15, 2006
    Assignee: Purdue Research Foundation
    Inventors: Jillian M. Buriak, Patrick T. Hurley