Patents by Inventor Patrick W. Goodwill

Patrick W. Goodwill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103103
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: June 5, 2023
    Publication date: March 28, 2024
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11709212
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: July 25, 2023
    Assignee: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Publication number: 20220221537
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: January 21, 2022
    Publication date: July 14, 2022
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11231469
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: January 25, 2022
    Assignee: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 11204398
    Abstract: A Magnetic Particle Imaging (MPI) system with a magnet configured to generate a magnetic field with a field free line, the magnet integrated with a flux return designed so that a flux path at approximately the center of the field-free line has a first reluctance and a second flux path distal from the center of the field-free line has a second reluctance, and the second reluctance is lower than the first reluctance to facilitate a high fidelity magnetic field and high fidelity field free line.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 21, 2021
    Assignees: MAGNETIC INSIGHT, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Patrick W. Goodwill
  • Patent number: 11054392
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scamled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: July 6, 2021
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 10775452
    Abstract: A Magnetic Particle Imaging (MPI) system with a magnet configured to generate a magnetic field having a field free line, the system including at least one shim magnet configured to modify the magnetic field in a manner to maintain desired magnetic flux distributions during imaging.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 15, 2020
    Assignees: MAGNETIC INSIGHT, INC., UNIVERSITY OF CALIFORNIA AT BERKELEY
    Inventor: Patrick W. Goodwill
  • Publication number: 20200245893
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 10667716
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: June 2, 2020
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 10466316
    Abstract: A Magnetic Particle Imaging (MPI) system including a mechanically-rotatable magnet generating a field-free line, where the system is capable of acquiring a plurality of projections at a plurality of rotation angles, and where the projection acquisition includes positioning the field free line at a plurality of positions at the plurality of angles.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 5, 2019
    Assignee: MAGNETIC INSIGHT, INC.
    Inventor: Patrick W. Goodwill
  • Publication number: 20190212298
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scamled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Application
    Filed: July 20, 2018
    Publication date: July 11, 2019
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20190079149
    Abstract: A pulsed magnetic particle imaging system includes a magnetic field generating system that includes at least one magnet, the magnetic field generating system providing a spatially structured magnetic field within an observation region of the magnetic particle imaging system such that the spatially structured magnetic field will have a field-free region (FFR) for an object under observation having a magnetic nanoparticle tracer distribution therein. The pulsed magnetic particle imaging system also includes a pulsed excitation system arranged proximate the observation region, the pulsed excitation system includes an electromagnet and a pulse sequence generator electrically connected to the electromagnet to provide an excitation waveform to the electromagnet, wherein the electromagnet when provided with the excitation waveform generates an excitation magnetic field within the observation region to induce an excitation signal therefrom by at least one of shifting a location or condition of the FFR.
    Type: Application
    Filed: August 16, 2018
    Publication date: March 14, 2019
    Applicant: The Regents of the University of California
    Inventors: Steven M. Conolly, Patrick W. Goodwill, Daniel Hensley, Zhi Wei Tay, Bo Zheng
  • Patent number: 10048224
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scaled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 14, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20180206757
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: August 10, 2017
    Publication date: July 26, 2018
    Applicant: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20180017641
    Abstract: A Magnetic Particle Imaging (MPI) system including a mechanically-rotatable magnet generating a field-free line, where the system is capable of acquiring a plurality of projections at a plurality of rotation angles, and where the projection acquisition includes positioning the field free line at a plurality of positions at the plurality of angles.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Applicant: MAGNETIC INSIGHT, INC.
    Inventor: Patrick W. Goodwill
  • Publication number: 20180017639
    Abstract: A Magnetic Particle Imaging (MPI) system with a magnet configured to generate a magnetic field with a field free line, the magnet integrated with a flux return designed so that a flux path at approximately the center of the field-free line has a first reluctance and a second flux path distal from the center of the field-free line has a second reluctance, and the second reluctance is lower than the first reluctance to facilitate a high fidelity magnetic field and high fidelity field free line.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventor: Patrick W. Goodwill
  • Publication number: 20180017640
    Abstract: A Magnetic Particle Imaging (MPI) system with a magnet configured to generate a magnetic field having a field free line, the system including at least one shim magnet configured to modify the magnetic field in a manner to maintain desired magnetic flux distributions during imaging.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventor: Patrick W. Goodwill
  • Patent number: 9763594
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 19, 2017
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Publication number: 20160135710
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Application
    Filed: December 16, 2015
    Publication date: May 19, 2016
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 9274084
    Abstract: A magnetic particle imaging device is provided. The device includes a magnetic field source configured to produce a magnetic field having a non-saturating magnetic field region, an excitation signal source configured to produce an excitation signal in the non-saturating magnetic field region that produces a detectable signal from magnetic particles in the non-saturating magnetic field region, and a signal processor configured to convert a detected signal into an image of the magnetic particles. Aspects of the present disclosure also include methods of imaging magnetic particles in a sample, and methods of producing an image of magnetic particles in a subject. The subject devices and methods find use in a variety of applications, such as medical imaging applications.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 1, 2016
    Assignee: The Regents of the University of California
    Inventors: Patrick W. Goodwill, Steven M. Conolly