Patents by Inventor Patrick W. Whitlock

Patrick W. Whitlock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075183
    Abstract: Decellularized matrix microspheres comprising a polymeric material and a donor tissue are provided. Also disclosed are structures containing a plurality of decellularized matrix microspheres incorporating a first polymer and a donor tissue; and a second polymer, wherein the decellularized matrix microspheres and the second polymer are in the form of a filament. Methods of treating a tissue injury employing the matrix microspheres and structures described as well as their methods of manufacture are also provided.
    Type: Application
    Filed: June 13, 2023
    Publication date: March 7, 2024
    Inventors: Chia-Ying James Lin, Stacey Gruber, Patrick W. Whitlock, Paulomi Ghosh
  • Patent number: 11712496
    Abstract: Decellularized matrix microspheres comprising a polymeric material and a donor tissue are provided. Also disclosed are structures containing a plurality of decellularized matrix microspheres incorporating a first polymer and a donor tissue; and a second polymer, wherein the decellularized matrix microspheres and the second polymer are in the form of a filament. Methods of treating a tissue injury employing the matrix microspheres and structures described as well as their methods of manufacture are also provided.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: August 1, 2023
    Assignees: University of Cincinnati, Children's Hospital Medical Center
    Inventors: Chia-Ying James Lin, Stacey Gruber, Patrick W. Whitlock, Paulomi Ghosh
  • Publication number: 20200289702
    Abstract: Decellularized matrix microspheres comprising a polymeric material and a donor tissue are provided. Also disclosed are structures containing a plurality of decellularized matrix microspheres incorporating a first polymer and a donor tissue; and a second polymer, wherein the decellularized matrix microspheres and the second polymer are in the form of a filament. Methods of treating a tissue injury employing the matrix microspheres and structures described as well as their methods of manufacture are also provided.
    Type: Application
    Filed: October 26, 2018
    Publication date: September 17, 2020
    Inventors: Chia-Ying James Lin, Stacey Gruber, Patrick W. Whitlock, Paulomi Ghosh
  • Patent number: 9114196
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: August 25, 2015
    Assignee: Wake Forest University Health Sciences
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock
  • Publication number: 20120259415
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 11, 2012
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock
  • Patent number: 8221777
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: July 17, 2012
    Assignee: Wake Forest University Health Sciences
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock
  • Publication number: 20110046732
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Application
    Filed: October 1, 2010
    Publication date: February 24, 2011
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock
  • Patent number: 7829108
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 9, 2010
    Assignee: Wake Forest University Health Sciences
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock
  • Publication number: 20070248638
    Abstract: Methods are provided for producing a bioscaffold from natural tissues by oxidizing a decellularized tissue to produce a bioscaffold having pores therein. The pore size and porosity is increased to better accommodate intact cells so that live cells can better infiltrate and inhabit the bioscaffold. The bioscaffold may be freeze-dried or lyophilized, sterilized and (optionally) aseptically packaged for subsequent use. A further aspect of the present invention is a bioscaffold produced by the processes described herein. Methods of treatment using the bioscaffold as a graft or as a biomedical implant for implantation are also provided. Also provided are methods of seeding a bioscaffold with mammalian cells, wherein the seeding carried out either in vitro or in vivo, and wherein a bioscaffold produced as described herein is utilized for said seeding.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 25, 2007
    Inventors: Mark E. Van Dyke, George J. Christ, Patrick W. Whitlock