Patents by Inventor Patrick W. Wisk

Patrick W. Wisk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161767
    Abstract: An optical preform manufacturing process is disclosed in which an alkali dopant is deposited between an optical fiber core rod and an optical fiber cladding jacket. Depositing the alkali dopant between the core rod and the cladding jacket permits diffusion of the alkali dopants into the core during fiber draw when the core and the cladding are at their respective transition (or vitrification) temperatures. Introduction of the alkali dopants between the core rod and the cladding jacket also permits decoupling of the alkali doping process from one or more of other optical preform manufacturing processes. The optical preform manufacturing process can also include placing alkali dopants between an optical fiber inner cladding jacket and an optical fiber outer cladding jacket to reduce the glass viscosity during fiber draw.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: November 2, 2021
    Assignee: OFS FITEL, LLC
    Inventors: David W. Peckham, Patrick W. Wisk, Man F. Yan
  • Publication number: 20200024176
    Abstract: An optical preform manufacturing process is disclosed in which an alkali dopant is deposited between an optical fiber core rod and an optical fiber cladding jacket. Depositing the alkali dopant between the core rod and the cladding jacket permits diffusion of the alkali dopants into the core during fiber draw when the core and the cladding are at their respective transition (or vitrification) temperatures. Introduction of the alkali dopants between the core rod and the cladding jacket also permits decoupling of the alkali doping process from one or more of other optical preform manufacturing processes. The optical preform manufacturing process can also include placing alkali dopants between an optical fiber inner cladding jacket and an optical fiber outer cladding jacket to reduce the glass viscosity during fiber draw.
    Type: Application
    Filed: January 7, 2019
    Publication date: January 23, 2020
    Applicant: OFS Fitel, LLC
    Inventors: David W. Peckham, Patrick W. Wisk, Man F. Yan
  • Patent number: 10259742
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 10197728
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 5, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20180251397
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: February 2, 2018
    Publication date: September 6, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9919955
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
  • Patent number: 9658395
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber).
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 23, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20170022094
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 26, 2017
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Publication number: 20160170137
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Application
    Filed: November 12, 2015
    Publication date: June 16, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Publication number: 20160109651
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (Le., forming a “low loss” optical fiber).
    Type: Application
    Filed: August 13, 2015
    Publication date: April 21, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Patent number: 9231365
    Abstract: A discrete Raman amplifier comprises a Raman gain fiber, an input port into the Raman gain fiber for receiving optical signals to be Raman amplified, and an output port out of the Raman gain fiber for emitting Raman-amplified optical signals. A pump light input provides pump light to the Raman gain fiber at a plurality of wavelengths so as to provide Raman amplification over the selected signal wavelength range. Within both the pump light wavelength range and the selected signal wavelength range, the Raman gain fiber has only positive chromatic dispersion, and the Raman gain fiber has a moderate effective area.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: January 5, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Patrick W Wisk, Man F Yan, Benyuan Zhu
  • Publication number: 20150364897
    Abstract: A discrete Raman amplifier comprises a Raman gain fiber, an input port into the Raman gain fiber for receiving optical signals to be Raman amplified, and an output port out of the Raman gain fiber for emitting Raman-amplified optical signals. A pump light input provides pump light to the Raman gain fiber at a plurality of wavelengths so as to provide Raman amplification over the selected signal wavelength range. Within both the pump light wavelength range and the selected signal wavelength range, the Raman gain fiber has only positive chromatic dispersion, and the Raman gain fiber has a moderate effective area.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Applicant: OFS FITEL, LLC
    Inventors: Patrick W. Wisk, Man F. Yan, Benyuan Zhu
  • Patent number: 8428409
    Abstract: An optical waveguide has a refractive index variation that is structured to provide the fiber, over a wavelength operating range, with an effective area supporting multiple Stokes shifts and with a negative dispersion value at a target wavelength within the wavelength operating range. The refractive index variation is further structured to provide the fiber with a finite LP01 cutoff at a wavelength longer than the target wavelength, whereby the LP01 cutoff wavelength provides a disparity, for a selected bending diameter, between macrobending losses at the target wavelength and macrobending losses at wavelengths longer than the target wavelength, whereby Raman scattering is frustrated at wavelengths longer than the target wavelength.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 23, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Patrick W. Wisk, Man F. Yan
  • Publication number: 20100284659
    Abstract: An optical waveguide has a refractive index variation that is structured to provide the fiber, over a wavelength operating range, with an effective area supporting multiple Stokes shifts and with a negative dispersion value at a target wavelength within the wavelength operating range. The refractive index variation is further structured to provide the fiber with a finite LP01 cutoff at a wavelength longer than the target wavelength, whereby the LP01 cutoff wavelength provides a disparity, for a selected bending diameter, between macrobending losses at the target wavelength and macrobending losses at wavelengths longer than the target wavelength, whereby Raman scattering is frustrated at wavelengths longer than the target wavelength.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 11, 2010
    Applicant: OFS FITEL LLC, a Delaware Limied Liability Company
    Inventors: Jeffrey W. Nicholson, Patrick W. Wisk, Man F. Yan
  • Patent number: 5459097
    Abstract: In accordance with the invention, aluminum-containing layers are grown by molecular beam processes using as an arsenic precursor phenylarsine (PhAs). Because PhAs is more reactive than arsine and less reactive than arsenic, it decomposes selectively on III-V surfaces but not on mask materials. Thus in contrast to conventional processes, growth using PhAs permits selective growth on unmasked gallium arsenide surfaces but inhibits growth on typical mask materials such as silicon nitride.
    Type: Grant
    Filed: October 7, 1993
    Date of Patent: October 17, 1995
    Assignee: AT&T Corp.
    Inventors: Cammy R. Abernathy, Stephen J. Pearton, Fan Ren, Patrick W. Wisk
  • Patent number: 5227006
    Abstract: In accordance with the invention, gallium-containing layers are grown by molecular beam processes using as an arsenic precursor a compound of the dialkylaminoarsenic family (DAAAs) such as tris-dimethylamino arsenic (DMAAs). In contrast to conventional arsenic sources, DAAAs act as carbon "getters". When DAAAs are used as an arsenic source, the DAAAs getter carbon impurities from the gallium source. Thus, for example, DAAAs can be used as an arsenic source in combination with TMG as a gallium source to selectively grow high purity or n-type layers of gallium arsenide at low temperatures below 600.degree. C. In addition DMAAs has been found to be an excellent cleaning agent for gallium arsenide materials.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: July 13, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: Cammy R. Abernathy, Stephen J. Pearton, Fan Ren, Patrick W. Wisk