Patents by Inventor Paul A. Kilmurray

Paul A. Kilmurray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200293034
    Abstract: Methods and apparatus are provided for controlling an autonomous vehicle. The control device includes an interface that establishes a connection to an autonomous vehicle, a processor that processes inputs and generates control commands to control at least one function of the autonomous vehicle, and an input arrangement with at least one control element that is assigned to a function of the autonomous vehicle. The control device transitions a controller of the autonomous vehicle to operate in at least one of a first remote operation mode and a second remote operation mode in which the autonomous vehicle is controlled by the control device, when the control device is connected to the autonomous vehicle via the interface. At least one function of a scope of functions of the autonomous vehicle is restricted in the first remote operation mode and the second remote operation mode.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jonathan T. Shibata, Paul A. Kilmurray, Krunal P. Patel, David H. Vu, Vukasin Denic, Adam J. Heisel, Mohsen Mehdizade
  • Patent number: 10589783
    Abstract: A method for performing operations onboard a vehicle is provided. The method obtains a steering calibration command, by a computing device communicatively coupled to a steering mechanism for the vehicle; initiates execution of the steering calibration command, by the computing device via the steering mechanism; determines at least one maximum steering angle of the vehicle, based on execution of the steering calibration command, the at least one maximum steering angle being associated with a maximum potential position of the steering mechanism; identifies a zero-position center of the steering mechanism, based on the at least one maximum steering angle of the vehicle; stores the zero-position center and the at least one maximum steering angle, by the computing device, for future use; and broadcasts the zero-position center and the at least one maximum steering angle, via a Controller Area Network (CAN) bus of the vehicle, by the communication device.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alexander M. Allan, Addney T. Biery, II, Paul A. Kilmurray
  • Patent number: 10525957
    Abstract: A vehicle includes a plurality of brake assemblies configured to control braking of a respective wheel of the vehicle. The brake assemblies includes a first brake assembly integrated with a smart actuator unit including a first actuator controller and a first electro-mechanical actuator that is configured to adjust a brake force applied to a first wheel coupled to the first brake assembly. A second brake assembly excludes an actuator controller and has installed therein a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel coupled to the second brake assembly. At least one electronic actuator driver unit is remotely located from the first and second brake assemblies, and is configured to output a high-power signal that drives the first and second electro-mechanical actuators in response to receiving a digital command signal from the first actuator controller.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan J. Houtman, Christopher C. Chappell, Kevin S. Kidston, Paul A. Kilmurray, Eric E. Krueger, Patrick J. Monsere, Brandon C. Pennala, Michael C. Roberts, Steven J. Weber
  • Patent number: 10507816
    Abstract: A vehicle with a fault tolerant electronic brake-by-wire (BBW) system includes a plurality of brake assemblies that control braking of a respective wheel of the vehicle. The brake assemblies include a first brake assembly and a second brake assembly. The first brake assembly is integrated with at least one enhanced brake actuator assembly including a first electronic actuator driver circuit in signal communication with a first electro-mechanical actuator. The first brake assembly is configured to adjust a brake force applied to a first wheel of the vehicle. The second brake assembly is integrated with at least one enhanced smart brake actuator assembly including a first actuator controller in signal communication with a second electronic actuator driver circuit. The second electronic actuator driver circuit is in signal communication with a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel of the vehicle.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 17, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul A. Kilmurray, Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Steven J. Weber
  • Patent number: 10501063
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 10, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20190300052
    Abstract: A method for performing operations onboard a vehicle is provided. The method obtains a steering calibration command, by a computing device communicatively coupled to a steering mechanism for the vehicle; initiates execution of the steering calibration command, by the computing device via the steering mechanism; determines at least one maximum steering angle of the vehicle, based on execution of the steering calibration command, the at least one maximum steering angle being associated with a maximum potential position of the steering mechanism; identifies a zero-position center of the steering mechanism, based on the at least one maximum steering angle of the vehicle; stores the zero-position center and the at least one maximum steering angle, by the computing device, for future use; and broadcasts the zero-position center and the at least one maximum steering angle, via a Controller Area Network (CAN) bus of the vehicle, by the communication device.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 3, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alexander M. Allan, Addney T. Biery, II, Paul A. Kilmurray
  • Patent number: 10239531
    Abstract: A vehicle includes a fault-tolerant braking system that controls a brake assembly which is configured to adjust a braking force applied to one or more wheels. The fault-tolerant braking system further includes a brake-by-wire (BBW) system and a vehicle control module (VCM). The BBW system is configured to control the brake assembly in response to a braking request. The VCM is configured to detect a fault of at least one of the brake assembly and the BBW system. In response to detecting the fault, the VCM selectively operates the vehicle between a normal operating mode and at least one degraded driving mode that limits operation of at least one of the vehicle engine and the vehicle transmission compared to the normal operating mode.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 26, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul A. Kilmurray, Alan J. Houtman, Christopher C. Chappell, Brandon C. Pennala
  • Patent number: 10166954
    Abstract: A brake pedal assembly of a brake-by-wire system of a vehicle includes a support structure, a brake pedal pivotally engaged to the support structure at a first pivot axis, and a brake pedal emulator assembly. The brake pedal emulator assembly extends between and is pivotally engaged to the brake pedal and the support structure at respective second and third pivot axis. The brake pedal emulator assembly includes a brake pedal emulator and an adjustment mechanism aligned along a centerline intersecting the second and third pivot axis. The brake pedal emulator is constructed and arranged to displace axially when the brake pedal is actuated, and the adjustment mechanism is constructed and arranged to adjust axial displacement.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 1, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan J. Houtman, Brandon C. Pennala, Paul A. Kilmurray, Eric E. Krueger
  • Patent number: 10144402
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 4, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Paul A. Kilmurray, Patrick J. Monsere, Eric E. Krueger, Alan J. Houtman, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber
  • Patent number: 10086806
    Abstract: A vehicle is provided. The vehicle includes a vehicle system. The vehicle system includes a brake-by-wire portion, which also includes a controller. The controller can cause a forced coastdown of the vehicle. The forced coastdown includes performing analyzing conditions of the vehicle system to determine whether the vehicle is in a stable state and to determine an amount of energy available to the vehicle system and automatically applying the forced coastdown when the vehicle is not in the stable state and the amount of energy is less than or equal to a threshold for continued manual operation of the vehicle. The forced coastdown also includes utilizing brake pressure to reduce a speed of the vehicle.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 2, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Paul A. Kilmurray, Christopher C. Chappell
  • Publication number: 20180194353
    Abstract: A vehicle includes a fault-tolerant braking system that controls a brake assembly which is configured to adjust a braking force applied to one or more wheels. The fault-tolerant braking system further includes a brake-by-wire (BBW) system and a vehicle control module (VCM). The BBW system is configured to control the brake assembly in response to a braking request. The VCM is configured to detect a fault of at least one of the brake assembly and the BBW system. In response to detecting the fault, the VCM selectively operates the vehicle between a normal operating mode and at least one degraded driving mode that limits operation of at least one of the vehicle engine and the vehicle transmission compared to the normal operating mode.
    Type: Application
    Filed: January 10, 2017
    Publication date: July 12, 2018
    Inventors: Paul A. Kilmurray, Alan J. Houtman, Christopher C. Chappell, Brandon C. Pennala
  • Publication number: 20180141530
    Abstract: A brake-by-wire system includes a controller, a brake assembly, a pedal assembly, and a hydraulic backup assembly. The brake assembly includes a brake and an actuator connected to the brake when the system is in a normal mode. The pedal assembly is coupled to the brake when the system is in a backup mode, and is coupled to the controller when in the normal mode. The controller receives braking signals from the pedal assembly and outputs a command signal to the actuator. The actuator drives the brake in the normal mode. The backup assembly includes a hydraulic line in controlled fluid communication with the brake and pedal assembly. A valve is in a normal position that isolates the pedal assembly from the brake when in the normal mode, and is in a backup position that provides communication between the pedal assembly and the brake when in the backup mode.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 24, 2018
    Inventors: Paul A. Kilmurray, Kevin S. Kidston, Alan J. Houtman
  • Publication number: 20180093648
    Abstract: A brake pedal emulator extends and is connected between a support structure and a brake pedal along a centerline. The emulator includes a hydraulic cylinder, a piston head, and a variable flow communicator. An outer casing of the cylinder engages one of the structure and the pedal. The piston head engages the other of the structure and the pedal, and the communicator is carried between the casing and the piston head. A first chamber is defined at least in-part by the casing and a first side of the piston head, and a second chamber is defined at least in-part by the casing and an opposite second side of the piston head. The piston head is in sealed and slides with respect to the casing, and the communicator is adapted to provide fluid communication between the first and second chambers that varies with axial displacement of the piston head.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Brandon C. Pennala, Alan J. Houtman, Paul A. Kilmurray, Christopher C. Chappell, Grant A. Browning, Robert J. Payton, JR., Jordan M. Krell
  • Publication number: 20180056961
    Abstract: A vehicle includes a plurality of electronic brake system (EBS) controllers configured to detect at least one braking event, and a plurality of brake assemblies. Each brake assembly is coupled to a respective wheel of the vehicle and includes an enhanced smart actuator. The enhanced smart actuator further includes an electro-mechanical actuator, and at least one power circuit. The electro-mechanical actuator is configured to adjust a torque force applied to the respective wheel. The at least one electronic power circuit is configured to output a high-frequency switched high-power current drive signal that drives the electro-mechanical actuator. The EBS controllers control a first group of enhanced smart actuators independently from a second group of enhanced smart actuators that exclude the enhanced smart actuators of the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20180056965
    Abstract: A vehicle includes a plurality of brake assemblies configured to control braking of a respective wheel of the vehicle. The brake assemblies includes a first brake assembly integrated with a smart actuator unit including a first actuator controller and a first electro-mechanical actuator that is configured to adjust a brake force applied to a first wheel coupled to the first brake assembly. A second brake assembly excludes an actuator controller and has installed therein a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel coupled to the second brake assembly. At least one electronic actuator driver unit is remotely located from the first and second brake assemblies, and is configured to output a high-power signal that drives the first and second electro-mechanical actuators in response to receiving a digital command signal from the first actuator controller.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Alan J. Houtman, Christopher C. Chappell, Kevin S. Kidston, Paul A. Kilmurray, Eric E. Krueger, Patrick J. Monsere, Brandon C. Pennala, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180056960
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20180056959
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 1, 2018
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Paul A. Kilmurray, Patrick J. Monsere, Eric E. Krueger, Alan J. Houtman, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180056964
    Abstract: A vehicle includes a plurality of brake assemblies, and a brake request input device. Each brake assembly is coupled to a respective wheel of the vehicle and is configured to control braking of the respective wheel. The brake request input device is configured to output an electronic brake request signal indicating a request to brake at least one of the wheels. Each brake assembly has integrated therein an enhanced smart actuator unit that includes an electronic actuator controller configured to control a braking torque applied to the respective wheel in response to receiving the brake request signal.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Paul A. Kilmurray, Eric E. Krueger, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber, Patrick J. Monsere
  • Publication number: 20180056962
    Abstract: A vehicle with a fault tolerant electronic brake-by-wire (BBW) system includes a plurality of brake assemblies that control braking of a respective wheel of the vehicle. The brake assemblies include a first brake assembly and a second brake assembly. The first brake assembly is integrated with at least one enhanced brake actuator assembly including a first electronic actuator driver circuit in signal communication with a first electro-mechanical actuator. The first brake assembly is configured to adjust a brake force applied to a first wheel of the vehicle. The second brake assembly is integrated with at least one enhanced smart brake actuator assembly including a first actuator controller in signal communication with a second electronic actuator driver circuit. The second electronic actuator driver circuit is in signal communication with a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel of the vehicle.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Paul A. Kilmurray, Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Steven J. Weber
  • Publication number: 20180050672
    Abstract: A vehicle is provided. The vehicle includes a vehicle system. The vehicle system includes a brake-by-wire portion, which also includes a controller. The controller can cause a forced coastdown of the vehicle. The forced coastdown includes performing analyzing conditions of the vehicle system to determine whether the vehicle is in a stable state and to determine an amount of energy available to the vehicle system and automatically applying the forced coastdown when the vehicle is not in the stable state and the amount of energy is less than or equal to a threshold for continued manual operation of the vehicle. The forced coastdown also includes utilizing brake pressure to reduce a speed of the vehicle.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Brandon C. Pennala, Paul A. Kilmurray, Christopher C. Chappell