Patents by Inventor Paul B. Fischer

Paul B. Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11218133
    Abstract: Techniques are disclosed for forming integrated circuit film bulk acoustic resonator (FBAR) devices having multiple resonator thicknesses on a common substrate. A piezoelectric stack is formed in an STI trench and overgrown onto the STI material. In some cases, the piezoelectric stack can include epitaxially grown AlN. In some cases, the piezoelectric stack can include single crystal (epitaxial) AlN in combination with polycrystalline (e.g., sputtered) AlN. The piezoelectric stack thus forms a central portion having a first resonator thickness and end wings extending from the central portion and having a different resonator thickness. Each wing may also have different thicknesses from one another. Thus, multiple resonator thicknesses can be achieved on a common substrate, and hence, multiple resonant frequencies on that same substrate. The end wings can have metal electrodes formed thereon, and the central portion can have a plurality of IDT electrodes patterned thereon.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 4, 2022
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Bruce A. Block, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Patent number: 11205717
    Abstract: Techniques are disclosed for forming a heterojunction bipolar transistor (HBT) that includes a laterally grown epitaxial (LEO) base layer that is disposed between corresponding emitter and collector layers. Laterally growing the base layer of the HBT improves electrical and physical contact between electrical contacts to associated portions of the HBT device (e.g., a collector). By improving the quality of electrical and physical contact between a layer of an HBT device and corresponding electrical contacts, integrated circuits using HBTs are better able to operate at gigahertz frequency switching rates used for modern wireless communications.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 21, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Paul B. Fischer
  • Patent number: 11145648
    Abstract: Enhancement/depletion device pairs and methods of producing the same are disclosed. A disclosed example multilayered die includes a depletion mode device that includes a first polarization layer and a voltage tuning layer, and an enhancement mode device adjacent the depletion mode device, where the enhancement mode device includes a second polarization layer, and where the second polarization layer includes an opening corresponding to a gate of the enhancement mode device.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: October 12, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Paul B. Fischer
  • Patent number: 11056532
    Abstract: Techniques are disclosed for monolithic co-integration of thin-film bulk acoustic resonator (TFBAR, also called FBAR) devices and III-N semiconductor transistor devices. In accordance with some embodiments, one or more TFBAR devices including a polycrystalline layer of a piezoelectric III-N semiconductor material may be formed alongside one or more III-N semiconductor transistor devices including a monocrystalline layer of III-N semiconductor material, over a commonly shared semiconductor substrate. In some embodiments, either (or both) the monocrystalline and the polycrystalline layers may include gallium nitride (GaN), for example. In accordance with some embodiments, the monocrystalline and polycrystalline layers may be formed simultaneously over the shared substrate, for instance, via an epitaxial or other suitable process. This simultaneous formation may simplify the overall fabrication process, realizing cost and time savings, at least in some instances.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 6, 2021
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Sanaz K. Gardner, Bruce A. Block
  • Patent number: 11056449
    Abstract: A guard ring structure includes a ring of semiconductor material disposed on a substrate. A conductive ring is disposed on the ring of semiconductor material. The conductive ring is interconnected by intervening vias. The guard ring structure may include a plurality of individual rings of the semiconductor material formed concentrically and in close proximity to one another on the substrate. A Guard ring structure is generally disposed around a periphery of a die containing integrated circuits that include transistors RF amplifiers and memory devices to reduce the impact of stresses arising from die sawing to separate individual die in a wafer.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 6, 2021
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer
  • Patent number: 11043627
    Abstract: Techniques are disclosed for co-integrating thin-film bulk acoustic resonator (TFBAR, also called FBAR) devices and III-N semiconductor transistor devices. In accordance with some embodiments, a given TFBAR device may include a superlattice structure comprising alternating layers of an epitaxial piezoelectric material, such as aluminum nitride (AlN), and any one, or combination, of other III-N semiconductor materials. For instance, aluminum indium nitride (AlxIn1-xN), aluminum gallium nitride (AlxGa1-xN), or aluminum indium gallium nitride (AlxInyGa1-x-yN) may be interleaved with the AlN, and the particular compositional ratios thereof may be adjusted to customize resonator performance. In accordance with some embodiments, the superlattice layers may be formed via an epitaxial deposition process, allowing for precise control over film thicknesses, in some cases in the range of a few nanometers.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 22, 2021
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Paul B. Fischer
  • Patent number: 11037916
    Abstract: An apparatus is provided which comprises: a substrate; a first active device adjacent to the substrate; a first set of one or more layers to interconnect the one or more active devices; a second set of one or more layers; a second active device coupled to the second set of one or more layers; and a layer adjacent to one of the layers of the first set and the second active device, wherein the layer is to bond the one of the layers of the first set and the second active device.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Anup Pancholi, Prashant Majhi, Paul B. Fischer, Patrick Morrow
  • Patent number: 11005447
    Abstract: Embodiments of the invention include microelectronic devices, resonators, and methods of fabricating the microelectronic devices. In one embodiment, a microelectronic device includes a substrate and a plurality of cavities integrated with the substrate. A plurality of vertically oriented resonators are formed with each resonator being positioned in a cavity. Each resonator includes a crystalline or single crystal piezoelectric film.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 11, 2021
    Assignee: Intel Corporation
    Inventors: Paul B. Fischer, Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 10979012
    Abstract: Techniques are disclosed for forming integrated circuit single-flipped resonator devices that include an electrode formed of a two-dimensional electron gas (2DEG). The disclosed resonator devices may be implemented with various group III-nitride (III-N) materials, and in some cases, the 2DEG may be formed at a heterojunction of two epitaxial layers each formed of III-N materials, such as a gallium nitride (GaN) layer and an aluminum nitride (AlN) layer. The 2DEG electrode may be able to achieve similar or increased carrier transport as compared to a resonator device having an electrode formed of metal. Additionally, in some embodiments where AlN is used as the piezoelectric material for the resonator device, the AlN may be epitaxially grown which may provide increased performance as compared to piezoelectric material that is deposited by traditional sputtering techniques.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 13, 2021
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Bruce A. Block, Paul B. Fischer
  • Publication number: 20210104435
    Abstract: Embodiments of the present disclosure describe techniques for revealing a backside of an integrated circuit (IC) device, and associated configurations. The IC device may include a plurality of fins formed on a semiconductor substrate (e.g., silicon substrate), and an isolation oxide may be disposed between the fins along the backside of the IC device. A portion of the semiconductor substrate may be removed to leave a remaining portion. The remaining portion may be removed by chemical mechanical planarization (CMP) using a selective slurry to reveal the backside of the IC device. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 8, 2021
    Inventors: Il-Seok SON, Colin T. CARVER, Paul B. FISCHER, Patrick MORROW, Kimin JUN
  • Patent number: 10896847
    Abstract: Embodiments of the present disclosure describe techniques for revealing a backside of an integrated circuit (IC) device, and associated configurations. The IC device may include a plurality of fins formed on a semiconductor substrate (e.g., silicon substrate), and an isolation oxide may be disposed between the fins along the backside of the IC device. A portion of the semiconductor substrate may be removed to leave a remaining portion. The remaining portion may be removed by chemical mechanical planarization (CMP) using a selective slurry to reveal the backside of the IC device. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: January 19, 2021
    Assignee: Intel Corporation
    Inventors: Il-Seok Son, Colin T. Carver, Paul B. Fischer, Patrick Morrow, Kimin Jun
  • Publication number: 20200395358
    Abstract: Disclosed herein are IC structures, packages, and devices that include self-aligned III-N transistors monolithically integrated on the same support structure or material (e.g., a substrate, a die, or a chip) as extended-drain III-N transistors. Self-aligned III-N transistors may provide a viable approach to implementing digital logic circuits, e.g., to implementing enhancement mode transistors, on the same support structure with extended-drain III-N transistors which may be used as high-power transistors used to implement various RF components, thus enabling integration of III-N devices with digital logic.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Johann Christian Rode, Walid M. Hafez
  • Publication number: 20200382099
    Abstract: Techniques are disclosed for forming high frequency film bulk acoustic resonator (FBAR) devices having multiple resonator thicknesses on a common substrate. A piezoelectric stack is formed in an STI trench and overgrown onto the STI material. In some cases, the piezoelectric stack can include epitaxially grown AlN. In some cases, the piezoelectric stack can include single crystal (epitaxial) AlN in combination with polycrystalline (e.g., sputtered) AlN. The piezoelectric stack thus forms a central portion having a first resonator thickness and end wings extending from the central portion having a different resonator thickness. Each wing may also have different thicknesses. Thus, multiple resonator thicknesses can be achieved on a common substrate, and hence, multiple resonant frequencies on that same substrate. The end wings can have metal electrodes formed thereon, and the central portion can have a plurality of IDT electrodes patterned thereon.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Applicant: INTEL CORPORATION
    Inventors: Sansaptak Dasgupta, Bruce A. Block, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Publication number: 20200373297
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor-based cascode arrangements that may simultaneously realize enhancement mode transistor operation and high voltage capability. In one aspect, an IC structure includes a source region, a drain region, an enhancement mode III-N transistor, and a depletion mode III-N transistor, where each of the transistors includes a first and a second source or drain (S/D) terminals. The transistors are arranged in a cascode arrangement in that the first S/D terminal of the enhancement mode III-N transistor is coupled to the source region, the second S/D terminal of the enhancement mode III-N transistor is coupled to the first S/D terminal of the depletion mode III-N transistor, and the second S/D terminal of the depletion mode III-N transistor is coupled to the drain region.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200373421
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor arrangements that may reduce nonlinearity of off-state capacitance of the III-N transistors. In various aspects, III-N transistor arrangements limit the extent of access regions of the transistors, compared to conventional implementations, which may limit the depletion of the access regions. Due to the limited extent of the depletion regions of a transistor, the off-state capacitance may exhibit less variability in values across different gate-source voltages and, hence, exhibit a more linear behavior during operation.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 10848127
    Abstract: Techniques are disclosed for forming resonator devices using epitaxially grown piezoelectric films. Given the epitaxy, the films are single crystal or monocrystalline. In some cases, the piezoelectric layer of the resonator device may be an epitaxial III-V layer such as an Aluminum Nitride, Gallium Nitride, or other group III material-nitride (III-N) compound film grown as a part of a single crystal III-V material stack. In an embodiment, the III-V material stack includes, for example, a single crystal AlN layer and a single crystal GaN layer, although any other suitable single crystal piezoelectric materials can be used. An interdigitated transducer (IDT) electrode is provisioned on the piezoelectric layer and defines the operating frequency of the filter. A plurality of the resonator devices can be used to enable filtering specific different frequencies on the same substrate (by varying dimensions of the IDT electrodes).
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 24, 2020
    Assignee: INTEL CORPORATION
    Inventors: Bruce A. Block, Sansaptak Dasgupta, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Publication number: 20200365510
    Abstract: Disclosed herein are peripheral inductors for integrated circuits (ICs), as well as related methods and devices. In some embodiments, an IC device may include a die having an inductor extending around at least a portion of a periphery of the die.
    Type: Application
    Filed: September 20, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Kevin L. Lin, Paul B. Fischer
  • Patent number: 10840341
    Abstract: A semiconductor device is proposed. The semiconductor device includes a group III-N semiconductor layer, an electrically insulating material layer located on the group III-N semiconductor layer, and a metal contact structure located on the electrically insulating material layer. An electrical resistance between the metal contact structure and the group III-N semiconductor layer through the electrically insulating material layer is smaller than 1*10?7? for an area of 1 mm2. Further, semiconductor devices including a low resistance contact structure, radio frequency devices, and methods for forming semiconductor devices are proposed.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Walid M. Hafez
  • Publication number: 20200335526
    Abstract: Disclosed herein are IC structures, packages, and devices that include Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si transistors or other non-Si-based devices. In some aspects, the Si-based semiconductor material stack may be provided by semiconductor regrowth over an insulator material. Providing a Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si based devices may provide a viable approach to integrating Si-based transistors with non-Si technologies because the Si-based semiconductor material stack may serve as a foundation for forming Si-based transistors.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200335590
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors implementing various means by which their threshold voltage it tuned. In some embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included in a gate stack of the transistor. In other embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included between a gate stack and a III-N channel stack of the transistor. Including doped semiconductor or fixed charge materials either in the gate stack or between the gate stack and the III-N channel stack of III-N transistors adds charges, which affects the amount of 2DEG and, therefore, affects the threshold voltages of these transistors.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Marko Radosavljevic, Sansaptak Dasgupta, Yang Cao, Han Wui Then, Johann Christian Rode, Rahul Ramaswamy, Walid M. Hafez, Paul B. Fischer