Patents by Inventor Paul Benjerman Himelfarb

Paul Benjerman Himelfarb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911728
    Abstract: A reactor for reducing the concentration of NOx in a stream comprising: an inlet for the stream; an outlet for a stream containing a reduced concentration of NOx; one or more catalyst beds comprising a ceramic or metallic foam with a NOx reduction catalyst; one or more flow paths from the inlet to the outlet that passes through at least one catalyst bed wherein the catalyst beds are closed at the top and bottom so that the flow path through the catalyst bed passes through the sides of the catalyst bed in a lateral flow is described.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: February 27, 2024
    Assignee: SHELL USA, INC.
    Inventors: Wassim Klink, Guido Seng, Wenzhong Zhang, Andreas Klemt, Paul Benjerman Himelfarb
  • Publication number: 20220111334
    Abstract: A reactor for reducing the concentration of NOx in a stream comprising: an inlet for the stream; an outlet for a stream containing a reduced concentration of NOx ; one or more catalyst beds comprising a ceramic or metallic foam with a NOx reduction catalyst; one or more flow paths from the inlet to the outlet that passes through at least one catalyst bed wherein the catalyst beds are closed at the top and bottom so that the flow path through the catalyst bed passes through the sides of the catalyst bed in a lateral flow is described.
    Type: Application
    Filed: November 22, 2021
    Publication date: April 14, 2022
    Inventors: Wassim KLINK, Guido SENG, Wenzhong ZHANG, Andreas KLEMT, Paul Benjerman HIMELFARB
  • Patent number: 11179675
    Abstract: A reactor for reducing the concentration of NOx in a stream comprising: an inlet for the stream; an outlet for a stream containing a reduced concentration of NOx; one or more catalyst beds comprising a ceramic or metallic foam with a NOx reduction catalyst; one or more flow paths from the inlet to the outlet that passes through at least one catalyst bed wherein the catalyst beds are closed at the top and bottom so that the flow path through the catalyst bed passes through the sides of the catalyst bed in a lateral flow is described.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: November 23, 2021
    Assignee: SHELL OIL COMPANY
    Inventors: Wassim Klink, Guido Seng, Wenzhong Zhang, Andreas Klemt, Paul Benjerman Himelfarb
  • Patent number: 11020732
    Abstract: A catalyst bed comprising a ceramic or metallic foam comprising one or more NOx reduction catalysts is described. A method for reducing the concentration of NOx in a dust containing gas stream comprising: a) passing a first gas stream containing NOx into a contacting zone; b) contacting the first gas stream with a ceramic or metallic foam catalyst bed having one or more flow paths through the catalyst bed wherein the ceramic or metallic foam comprises a NOx reduction catalyst to produce a second gas stream with a reduced NOx concentration; and c) passing the second gas stream out of the contacting zone wherein the first gas stream has a dust concentration of at least 5 mg/Nm3 and the pressure drop of the foam catalyst bed increases by 300% or less relative to the initial pressure drop of the foam catalyst bed due to dust accumulation, measured under the same conditions is also described.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: June 1, 2021
    Assignee: SHELL OIL COMPANY
    Inventors: Wassim Klink, Guido Seng, Wenzhong Zhang, Andreas Klemt, Paul Benjerman Himelfarb
  • Patent number: 10960352
    Abstract: A catalyst bed comprising a ceramic or metallic foam comprising one or more NOx reduction catalysts is described. Further, a method for reducing the concentration of NOx in a dust containing gas stream comprising: a) passing a first gas stream containing NOx into a contacting zone; b) contacting the first gas stream with a ceramic or metallic foam catalyst bed having one or more flow paths through the catalyst bed wherein the ceramic or metallic foam comprises a NOx reduction catalyst to produce a second gas stream with a reduced NOx concentration; and c) passing the second gas stream out of the contacting zone wherein the first gas stream has a dust concentration of at least 5 mg/Nm3 and the second gas stream comprises at least 50% of the amount of dust in the first gas stream.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 30, 2021
    Assignee: SHELL OIL COMPANY
    Inventors: Guido Seng, Wassim Klink, Wenzhong Zhang, Andreas Klemt, Paul Benjerman Himelfarb
  • Publication number: 20190001266
    Abstract: A catalyst bed comprising a ceramic or metallic foam comprising one or more NOx reduction catalysts is described. Further, a method for reducing the concentration of NOx in a dust containing gas stream comprising: a) passing a first gas stream containing NOx into a contacting zone; b) contacting the first gas stream with a ceramic or metallic foam catalyst bed having one or more flow paths through the catalyst bed wherein the ceramic or metallic foam comprises a NOx reduction catalyst to produce a second gas stream with a reduced NOx concentration; and c) passing the second gas stream out of the contacting zone wherein the first gas stream has a dust concentration of at least 5 mg/Nm3 and the second gas stream comprises at least 50% of the amount of dust in the first gas stream.
    Type: Application
    Filed: December 20, 2016
    Publication date: January 3, 2019
    Inventors: Guido SENG, Wassim KLINK, Wenzhong ZHANG, Andreas KLEMT, Paul Benjerman HIMELFARB
  • Publication number: 20180369800
    Abstract: A catalyst bed comprising a ceramic or metallic foam comprising one or more NOx reduction catalysts is described. A method for reducing the concentration of NOx in a dust containing gas stream comprising: a) passing a first gas stream containing NOx into a contacting zone; b) contacting the first gas stream with a ceramic or metallic foam catalyst bed having one or more flow paths through the catalyst bed wherein the ceramic or metallic foam comprises a NOx reduction catalyst to produce a second gas stream with a reduced NOx concentration; and c) passing the second gas stream out of the contacting zone wherein the first gas stream has a dust concentration of at least 5 mg/Nm3 and the pressure drop of the foam catalyst bed increases by 300% or less relative to the initial pressure drop of the foam catalyst bed due to dust accumulation, measured under the same conditions is also described.
    Type: Application
    Filed: December 20, 2016
    Publication date: December 27, 2018
    Inventors: Wassim KLINK, Guido SENG, Wenzhong ZHANG, Andreas KLEMT, Paul Benjerman HIMELFARB
  • Publication number: 20180369753
    Abstract: A reactor for reducing the concentration of NO x in a stream comprising: an inlet for the stream; an outlet for a stream containing a reduced concentration of NOx; one or more catalyst beds comprising a ceramic or metallic foam with a NOx reduction catalyst; one or more flow paths from the inlet to the outlet that passes through at least one catalyst bed wherein the catalyst beds are closed at the top and bottom so that the flow path through the catalyst bed passes through the sides of the catalyst bed in a lateral flow is described.
    Type: Application
    Filed: December 20, 2016
    Publication date: December 27, 2018
    Inventors: Wassim KLINK, Guido SENG, Wenzhong ZHANG, Andreas KLEMT, Paul Benjerman HIMELFARB
  • Patent number: 9260670
    Abstract: Disclosed is a process for the selective hydrogenation of diolefins and sulfur compounds that are contained in a pyrolysis gasoline feedstream. The process includes utilizing a single hydrotreating reaction stage by introducing the pyrolysis gasoline feedstock that includes a diolefin concentration and an organic sulfur concentration into a reactor that is loaded with a high activity hydrotreating catalyst and which is operated under selective hydrogenation conditions. A reactor effluent having a reduced diolefin concentration and a reduced organic sulfur concentration is yielded from the reactor and is separated into a portion that is recycled as a reactor feed. The remaining portion of the reactor effluent is passed downstream for further processing or handling.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 16, 2016
    Assignee: Shell Oil Company
    Inventors: Dane Clark Grenoble, Paul Benjerman Himelfarb, Michael Norris Treybig, Brian Scott Vanderwilp
  • Patent number: 8163167
    Abstract: A process for the deep desulfurization of a heavy pyrolysis gasoline to very low levels of organic sulfur, e.g., 30 ppmv or less, with minimal octane number loss through aromatics saturation. The deep desulfurization is accomplished by contacting the heavy pyrolysis gasoline feedstock, partially in liquid and partially in gaseous phase, with a hydrogen treat gas containing a minimum H2S level in the presence of a hydrogenation catalyst in a one or two reactor system operated in trickle flow, using a low temperature, moderate pressure operating condition.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: April 24, 2012
    Assignee: Shell Oil Company
    Inventor: Paul Benjerman Himelfarb
  • Publication number: 20100288679
    Abstract: A process for the deep desulfurization of a heavy pyrolysis gasoline to very low levels of organic sulfur, e.g., 30 ppmv or less, with minimal octane number loss through aromatics saturation. The deep desulfurization is accomplished by contacting the heavy pyrolysis gasoline feedstock, partially in liquid and partially in gaseous phase, with a hydrogen treat gas containing a minimum H2S level in the presence of a hydrogenation catalyst in a one or two reactor system operated in trickle flow, using a low temperature, moderate pressure operating condition.
    Type: Application
    Filed: September 11, 2008
    Publication date: November 18, 2010
    Inventor: Paul Benjerman HIMELFARB
  • Patent number: 7727929
    Abstract: A catalyst having dual functionality for the removal of arsenic and the selective hydrogenation of diolefins from monoolefin-containing hydrocarbon streams that have an arsenic concentration and a diolefin concentration, and processes for making and using such catalyst. The catalyst is a heat treated shaped mixture of a refractory oxide and a Group VIII metal that is overlaid with additional Group VIII metal.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Paul Benjerman Himelfarb
  • Patent number: 7556729
    Abstract: Described is a method for the selective hydrodesulfurization of an olefin-containing hydrocarbon feedstock that uses a catalyst composition having a high content of a nickel component and an effective but small amount of a molybdenum component supported on a porous refractory oxide. A preferred catalyst composition contains an immaterial amount of a cobalt component.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: July 7, 2009
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Paul Benjerman Himelfarb
  • Patent number: 7230148
    Abstract: The present invention relates to an improved process for the hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds as impurities, the aromatics hydrogenation being conducted in a hydrogenation reactor in the presence of a nickel based catalyst. The improvement comprises operating the hydrogenation reactor at a reaction temperature sufficiently high from the start of a run, that the thiopheneic compounds are decomposed and substantially absorbed into the bulk of the nickel catalyst, thereby substantially extending the life of the catalyst.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: June 12, 2007
    Assignee: Shell Oil Company
    Inventors: Paul Benjerman Himelfarb, Charles Eugene Wilson
  • Patent number: 7102038
    Abstract: A process for making a selectively branched alcohol composition contacting a lower olefin feed comprising linear olefins having at least 3 carbon atoms and a concentration of phosphorous-containing compounds with a sorbent comprising a metal or metal oxide on a support, thereby substantially reducing the concentration of phosphorous-containing compounds and producing a purified lower olefin feed. The purified lower olefin feed is skeletally isomerized and then treated to selectively hydrogenate dienes before hydroformylation to produce selectively branched alcohols.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: September 5, 2006
    Assignee: Shell Oil Company
    Inventors: Brendan Dermont Murray, Paul Benjerman Himelfarb, Zaida Diaz, David Michael Singleton
  • Patent number: 7081555
    Abstract: The present invention relates to an improved process for the hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds as impurities, the aromatics hydrogenation being conducted in a hydrogenation reactor in the presence of a nickel based catalyst. The improvement comprises operating the hydrogenation reactor at a reaction temperature sufficiently high from the start of a run, that the thiopheneic compounds are decomposed and substantially absorbed into the bulk of the nickel catalyst, thereby substantially extending the life of the catalyst.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: July 25, 2006
    Assignee: Shell Oil Company
    Inventors: Paul Benjerman Himelfarb, Charles Eugene Wilson
  • Publication number: 20040030208
    Abstract: The present invention relates to an improved process for the hydrogenation of aromatics in hydrocarbon feedstocks containing thiopheneic compounds as impurities, the aromatics hydrogenation being conducted in a hydrogenation reactor in the presence of a nickel based catalyst. The improvement comprises operating the hydrogenation reactor at a reaction temperature sufficiently high from the start of a run, that the thiopheneic compounds are decomposed and substantially absorbed into the bulk of the nickel catalyst, thereby substantially extending the life of the catalyst.
    Type: Application
    Filed: August 7, 2002
    Publication date: February 12, 2004
    Inventors: Paul Benjerman Himelfarb, Charles Eugene Wilson
  • Publication number: 20030149313
    Abstract: A process for making a selectively branched alcohol composition contacting a lower olefin feed comprising linear olefins having at least 3 carbon atoms and a concentration of phosphorous-containing compounds with a sorbent comprising a metal or metal oxide on a support, thereby substantially reducing the concentration of phosphorous-containing compounds and producing a purified lower olefin feed. The purified lower olefin feed is skeletally isomerized and then treated to selectively hydrogenate dienes before hydroformylation to produce selectively branched alcohols.
    Type: Application
    Filed: August 9, 2002
    Publication date: August 7, 2003
    Inventors: Brendan Dermot Murray, Paul Benjerman Himelfarb, Zaida Diaz, David Michael Singleton