Patents by Inventor Paul Clifton

Paul Clifton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978800
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: May 7, 2024
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Publication number: 20240075256
    Abstract: Multi-lumen catheters with first and second expandable members are configured so that one expandable member dilates the Sphincter of Oddi and the second anchors within the biliary duct distal to the Common Bile Duct/Cystic Duct junction or within the cystic duct. The multi-lumen catheters include a primary lumen sized and configured for delivering a flushing agent to remove gallstones together or separately with a dye to complete a Cholangiogram and also include at least one lumen in fluid communication with the first and second expandable members.
    Type: Application
    Filed: January 26, 2022
    Publication date: March 7, 2024
    Inventors: Lucas Paul Neff, Matthew S. Clifton
  • Publication number: 20240072150
    Abstract: An electrical contact structure (an MIS contact) includes one or more conductors (M-Layer), a semiconductor (S-Layer), and an interfacial dielectric layer (I-Layer) of less than 4 nm thickness disposed between and in contact with both the M-Layer and the S-Layer. The I-Layer is an oxide of a metal or a semiconductor. The conductor of the M-Layer that is adjacent to and in direct contact with the I-Layer is a metal oxide that is electrically conductive, chemically stable and unreactive at its interface with the I-Layer at temperatures up to 450° C. The electrical contact structure has a specific contact resistivity of less than or equal to approximately 10?5-10?7 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 2×1019 cm?3 and less than approximately 10?8 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 1020 cm?3.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 29, 2024
    Inventors: Paul A. Clifton, Andreas Goebel
  • Publication number: 20240030306
    Abstract: Techniques for reducing the specific contact resistance of metal-semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal-group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 25, 2024
    Inventors: Walter A. Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Publication number: 20240006532
    Abstract: A semiconductor structure includes a layer arrangement consisting of, in sequence, a semiconductor-on-insulator layer (SOI) over a buried oxide (BOX) layer over a buried stressor (BS) layer with a silicon bonding layer (BL) intervening between the BOX and the BS layers. The semiconductor structure may be created by forming the BS layer on a substrate of a first wafer; growing the BL layer at the surface of the BS layer; wafer bonding the first wafer to a second wafer having a silicon oxide layer formed on a silicon substrate such that the silicon oxide layer of the second wafer is bonded to the BL layer of the first wafer, and thereafter removing a portion of the silicon substrate of the second wafer.
    Type: Application
    Filed: September 11, 2023
    Publication date: January 4, 2024
    Inventors: Paul A. Clifton, Andreas Goebel
  • Patent number: 11843040
    Abstract: An electrical contact structure (an MIS contact) includes one or more conductors (M-Layer), a semiconductor (S-Layer), and an interfacial dielectric layer (I-Layer) of less than 4 nm thickness disposed between and in contact with both the M-Layer and the S-Layer. The I-Layer is an oxide of a metal or a semiconductor. The conductor of the M-Layer that is adjacent to and in direct contact with the I-Layer is a metal oxide that is electrically conductive, chemically stable and unreactive at its interface with the I-Layer at temperatures up to 450° C. The electrical contact structure has a specific contact resistivity of less than or equal to approximately 10?5-10?7 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 2×1019 cm?3 and less than approximately 10?8 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 1020 cm?3.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: December 12, 2023
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel
  • Patent number: 11804533
    Abstract: Techniques for reducing the specific contact resistance of metal-semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal-group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: October 31, 2023
    Assignee: Acorn Semi, LLC
    Inventors: Walter A. Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Publication number: 20230344200
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 26, 2023
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Patent number: 11791411
    Abstract: A semiconductor structure includes a layer arrangement consisting of, in sequence, a semiconductor-on-insulator layer (SOI) over a buried oxide (BOX) layer over a buried stressor (BS) layer with a silicon bonding layer (BL) intervening between the BOX and the BS layers. The semiconductor structure may be created by forming the BS layer on a substrate of a first wafer; growing the BL layer at the surface of the BS layer; wafer bonding the first wafer to a second wafer having a silicon oxide layer formed on a silicon substrate such that the silicon oxide layer of the second wafer is bonded to the BL layer of the first wafer, and thereafter removing a portion of the silicon substrate of the second wafer.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: October 17, 2023
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel
  • Publication number: 20230317814
    Abstract: An electrical contact structure (an MIS contact) includes one or more conductors (M-Layer), a semiconductor (S-Layer), and an interfacial dielectric layer (I-Layer) of less than 4 nm thickness disposed between and in contact with both the M-Layer and the S-Layer. The I-Layer is an oxide of a metal or a semiconductor. The conductor of the M-Layer that is adjacent to and in direct contact with the I-Layer is a metal oxide that is electrically conductive, chemically stable and unreactive at its interface with the I-Layer at temperatures up to 450° C. The electrical contact structure has a specific contact resistivity of less than or equal to approximately 10?5-10?7 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 2×1019 cm?3 and less than approximately 10?8 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 1020 cm?3.
    Type: Application
    Filed: November 10, 2020
    Publication date: October 5, 2023
    Inventors: Paul A. Clifton, Andreas Goebel
  • Patent number: 11728624
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: August 15, 2023
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Publication number: 20230207657
    Abstract: Techniques for reducing the specific contact resistance of metal - semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal - group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 29, 2023
    Inventors: Walter A. Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Publication number: 20230093111
    Abstract: An RF MOSFET includes respective pluralities of gate fingers, source fingers, and drain fingers formed on a semiconductor structure. The gate fingers are spaced apart from each other along a first direction, extend in a second, orthogonal direction, and are electrically connected to one another through a gate mandrel. The source fingers are spaced apart from each other along the first direction, extend in the second direction, and are electrically connected to one another through a source mandrel. The drain fingers are spaced apart from each other along the first direction, extend in the second direction, and are electrically connected to one another through a drain mandrel. Adjacent unit cell transistors of the RF MOSFET are separated from one another by a dummy gate and a trench that extends into the semiconductor structure. The semiconductor structure may be a bulk semiconductor wafer, a PD-SOI wafer, or an FD-SOI wafer.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 23, 2023
    Inventor: Paul A. Clifton
  • Patent number: 11610974
    Abstract: Techniques for reducing the specific contact resistance of metal-semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal-group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: March 21, 2023
    Assignee: Acorn Semi, LLC
    Inventors: Walter A. Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Publication number: 20230020403
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 19, 2023
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Publication number: 20230006066
    Abstract: A nanowire transistor includes undoped source and drain regions electrically coupled with a channel region. A source stack that is electrically isolated from a gate conductor includes an interfacial layer and a source conductor, and is coaxially wrapped completely around the source region, extending along at least a portion of the source region. A Schottky barrier between the source conductor and the source region is a negative Schottky barrier and a concentration of free charge carriers is induced in the semiconductor source region.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Inventors: Paul A. Clifton, Andreas Goebel, Walter A. Harrison
  • Patent number: 11476364
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: October 18, 2022
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Patent number: 11462643
    Abstract: A nanowire transistor includes undoped source and drain regions electrically coupled with a channel region. A source stack that is electrically isolated from a gate conductor includes an interfacial layer and a source conductor, and is coaxially wrapped completely around the source region, extending along at least a portion of the source region. A Schottky barrier between the source conductor and the source region is a negative Schottky barrier and a concentration of free charge carriers is induced in the semiconductor source region.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: October 4, 2022
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel, Walter A. Harrison
  • Publication number: 20220223735
    Abstract: A semiconductor structure includes a layer arrangement consisting of, in sequence, a semiconductor-on-insulator layer (SOI) over a buried oxide (BOX) layer over a buried stressor (BS) layer with a silicon bonding layer (BL) intervening between the BOX and the BS layers. The semiconductor structure may be created by forming the BS layer on a substrate of a first wafer; growing the BL layer at the surface of the BS layer; wafer bonding the first wafer to a second wafer having a silicon oxide layer formed on a silicon substrate such that the silicon oxide layer of the second wafer is bonded to the BL layer of the first wafer, and thereafter removing a portion of the silicon substrate of the second wafer.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 14, 2022
    Inventors: Paul A. Clifton, Andreas Goebel
  • Publication number: 20220173575
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines