Patents by Inventor Paul E. Glenn

Paul E. Glenn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175227
    Abstract: Apparatus and methods for analyzing single molecules and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: November 16, 2021
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Publication number: 20210315456
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 14, 2021
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20210277463
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Application
    Filed: May 7, 2021
    Publication date: September 9, 2021
    Applicant: Quantum-Si Invorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. File
  • Patent number: 11096573
    Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 24, 2021
    Assignee: Intelligent Diagnostics, LLC
    Inventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
  • Publication number: 20210148821
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20200400422
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397285
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397290
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397286
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397289
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200397287
    Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Tesseract Health, Inc.
    Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn
  • Publication number: 20200390327
    Abstract: A mobile communication device-based corneal topography system includes an illumination system, a mobile communication device and a corneal topography optical housing. The illumination system is configured to generate an illumination pattern and to generate reflections of the illumination pattern off a cornea of a subject, wherein the illumination system is aligned along an axis of centers of the illumination pattern. The mobile communication device includes an image sensor to capture an image of the reflected illumination pattern. The corneal topography optical housing is coupled to the illumination system and the mobile communication device, wherein the corneal topography optical housing supports and aligns the illumination system with the image sensor of the mobile communication device. The corneal topography optical housing includes an imaging system coupled to the image sensor.
    Type: Application
    Filed: February 22, 2019
    Publication date: December 17, 2020
    Inventors: David A. Wallace, Stephen Klyce, John R Rogers, R Stephen Mulder, Mark A Kahan, Paul E Glenn
  • Publication number: 20200335933
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 10741990
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200220317
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 9, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200158640
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Publication number: 20200124864
    Abstract: Apparatus and methods for coupling an optical beam from an optical source to a hi-tech system are described. A compact, low-cost beam-shaping and steering assembly may be located between the optical source and hi-tech system and provide automated adjustments to beam parameters such as beam position, beam rotation, and beam incident angles. The beam-shaping and steering assembly may be used to couple an elongated beam to a plurality of optical waveguides.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Paul E. Glenn, Jonathan C. Schultz, Benjamin Cipriany
  • Patent number: 10605730
    Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 31, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
  • Publication number: 20200088643
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
  • Patent number: 10551624
    Abstract: Apparatus and methods for coupling an optical beam from an optical source to a hi-tech system are described. A compact, low-cost beam-shaping and steering assembly may be located between the optical source and hi-tech system and provide automated adjustments to beam parameters such as beam position, beam rotation, and beam incident angles. The beam-shaping and steering assembly may be used to couple an elongated beam to a plurality of optical waveguides.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: February 4, 2020
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Paul E. Glenn, Jonathan C. Schultz, Benjamin Cipriany