Patents by Inventor Paul E. Goldenbaum

Paul E. Goldenbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230417746
    Abstract: A system includes a fluid transfer device and a lateral flow assay device. The fluid transfer device has an inlet fluidically coupleable to a bodily fluid source, an outlet fluidically coupleable to a sample reservoir, and a sequestration chamber configured to receive an initial volume of bodily fluid. The fluid transfer device can be transitioned between (1) a first state with the sequestration chamber in fluid communication with the inlet to receive the initial volume, (2) a second state with the outlet in fluid communication with the inlet to receive a subsequent flow of bodily fluid, and (3) a third state with the lateral flow assay device in fluid communication with the sequestration chamber to receive a portion of the initial volume of bodily fluid. The lateral flow assay device configured to provide an indication associated with a presence of a target analyte in the bodily fluid.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Paul E. GOLDENBAUM, Dylan GUELIG
  • Patent number: 7645573
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: January 12, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Nicholas Bachur, Jr., Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Patent number: 7645613
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: January 12, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Gary Siuzdak, Elizabeth J. Want, Zhouxin Shen, Nicholas Bachur, Jr., Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Patent number: 7632685
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 15, 2009
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Nicholas Bachur, Jr., Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20080138832
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated from the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: September 25, 2007
    Publication date: June 12, 2008
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20070184512
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Application
    Filed: December 28, 2006
    Publication date: August 9, 2007
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20040157242
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Application
    Filed: November 12, 2003
    Publication date: August 12, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20040106142
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 3, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20040096917
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated from the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20040097460
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20020086278
    Abstract: Culture media for microorganisms containing blood or hemin, particularly Trypticase Soy Agar with blood, and chocolate agar, are combined with known chromogenic substrates to produce chromogenic media. Methods for preparing these chromogenic media include adding chromogenic substrates to the surface of previously prepared media, or incorporating the chromogenic substrate into the media as it is prepared. Methods for distinguishing microorganisms in a sample using these culture media are also described.
    Type: Application
    Filed: September 28, 1999
    Publication date: July 4, 2002
    Inventors: C. MICHAEL GOSNELL, CARRIE A. HUHGES, PAUL.E GOLDENBAUM
  • Patent number: 6130057
    Abstract: Culture media for microorganisms containing blood or hemin, particularly Trypticase Soy Agar with blood, and chocolate agar, are combined with known chromogenic substrates to produce chromogenic media. Methods for preparing these chromogenic media include adding chromogenic substrates to the surface of previously prepared media, or incorporating the chromogenic substrate into the media as it is prepared. Methods for distinguishing microorganisms in a sample using these culture media are also described.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: October 10, 2000
    Assignee: Becton, Dickinson and Company
    Inventors: C. Michael Gosnell, Carrie A. Hughes, Paul E. Goldenbaum
  • Patent number: 4994378
    Abstract: A non-ionic lytic agent, preferably saponin for reducing the background carbon dioxide produced by blood cell metabolism is used in the testing of cultures for the presence of microorganisms. The hemolytic agent saponin is combined with a phospholipid, preferably L-.alpha.-Lecithin (phosphatidylcholine), to form mixed micelles which protect saponin from the effects of heat sterilization and high blood cholesterol levels, thus maintaining the lytic activity of saponin. The phospholipid/saponin mixed micelles are added to non-radiometric culture media vials such as Bactec.RTM. NR6A, NR7A and NR8A. The media vials are used in the Bactec.RTM. NR-660 and NR-730 instruments. However, the present invention may also be used in radiometric media such as Bactec.RTM. culture vials 6, 7 and 8 for reducing background carbon dioxide levels detected in C.sup.14 radiometric instruments such as the Bactec.RTM.
    Type: Grant
    Filed: September 8, 1989
    Date of Patent: February 19, 1991
    Assignee: Becton, Dickinson and Company
    Inventors: Dolores M. Berger, Paul E. Goldenbaum, Gregory Tice