Patents by Inventor Paul E. Jackson

Paul E. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942753
    Abstract: A folded slab waveguide laser having a hybrid waveguide-unstable resonator cavity. Multiple slab waveguides of thickness ‘t’ supporting vertical waveguide modes are physically arranged above one another in a stack and optically arranged in series through one or more cavity folding assemblies with curved mirrors. A gain medium such as a gas is arranged in each slab. Each cavity folding assembly is designed to redirect the radiation beam emitted from one slab waveguide into the next waveguide and also at the same time to provide a focus for the radiation beam so that a selected vertical waveguide mode (or modes) is (or are) coupled efficiently into the next slab.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: March 26, 2024
    Assignee: KERN TECHNOLOGIES, LLC
    Inventors: Paul E Jackson, Gerald L Kern, Jacob D Colby, Aaron M Kern, Tyler P Schmidt, Keith L Weiher
  • Publication number: 20230170663
    Abstract: A radio frequency, RF, slab laser comprising a live electrode (102) and a ground electrode (108) whose inwardly facing surfaces face each other to form a gap for forming a plasma discharge when the live electrode is supplied with a suitable RF drive signal. The electrodes are enclosed in a vacuum space by a vacuum housing (114) with an access aperture (116). The access aperture is sealed with a vacuum flange (70) that comprises an electrically insulating connector. A plurality of hollow conductors (62) are arranged to extend through the vacuum flange into the vacuum space and connect with the live electrode. The hollow conductors connect to the live electrode to supply it with its RF drive signal and also coolant fluid which is distributed through fluid circulation channels (80a, 80b). Coolant fluid is supplied to the live electrode through certain ones of the hollow conductors and taken out by others.
    Type: Application
    Filed: September 26, 2022
    Publication date: June 1, 2023
    Applicant: KERN TECHNOLOGIES, LLC
    Inventors: Keith L WEIHER, Gerald L KERN, Jacob D COLBY, Paul E JACKSON
  • Patent number: 11251578
    Abstract: A laser resonator comprising a specially designed front mirror 32. The front mirror 32 together with a rear mirror form a resonator cavity. As well as having a resonator cavity reflective surface 42, the front mirror 32 also has an output coupling reflective surface 44 which forms a continuation of the resonator cavity reflective surface 42 and extends at an angle thereto so as to direct a beam laterally out of the cavity. The output coupling reflective surface 44 and the resonator cavity reflective surface 44 are joined by a “soft” rounded edge 40 of arcuate cross-section, this rounded transition suppressing diffraction ripples that would otherwise be generated if the edge were “hard”, i.e. sharp.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: February 15, 2022
    Assignee: KERN TECHNOLOGIES, LLC
    Inventors: Paul E Jackson, Aaron M Kern
  • Patent number: 11011883
    Abstract: A radio-frequency, RF, slab laser 10 with a Z-fold resonator cavity defined by an output mirror 32, a first fold mirror 34, a second fold mirror 36 and a rear mirror 30. The second fold mirror 36 is rotated by an adjustment angle away from the angle it would have if the mirrors were all plane mirrors and directed the round trip beam path by direct reflection. Moreover, the rear mirror 30 is rotated by an adjustment angle that is approximately twice the adjustment angle of the second fold mirror 36. These rotations of the rear mirror 30 and second fold mirror 36 suppresses parasitic mode paths that would otherwise exist.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: May 18, 2021
    Assignee: KERN TECHNOLOGIES, LLC
    Inventors: Gerald L. Kern, Paul E. Jackson
  • Publication number: 20210083447
    Abstract: A laser resonator comprising a specially designed front mirror 32. The front mirror 32 together with a rear mirror form a resonator cavity. As well as having a resonator cavity reflective surface 42, the front mirror 32 also has an output coupling reflective surface 44 which forms a continuation of the resonator cavity reflective surface 42 and extends at an angle thereto so as to direct a beam laterally out of the cavity. The output coupling reflective surface 44 and the resonator cavity reflective surface 44 are joined by a “soft” rounded edge 40 of arcuate cross-section, this rounded transition suppressing diffraction ripples that would otherwise be generated if the edge were “hard”, i.e. sharp.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 18, 2021
    Applicant: KERN TECHNOLOGIES, LLC
    Inventors: Paul E. Jackson, Aaron M. Kern
  • Publication number: 20210006031
    Abstract: A folded slab waveguide laser having a hybrid waveguide-unstable resonator cavity. Multiple slab waveguides of thickness ‘t’ supporting vertical waveguide modes are physically arranged above one another in a stack and optically arranged in series through one or more cavity folding assemblies with curved mirrors. A gain medium such as a gas is arranged in each slab. Each cavity folding assembly is designed to redirect the radiation beam emitted from one slab waveguide into the next waveguide and also at the same time to provide a focus for the radiation beam so that a selected vertical waveguide mode (or modes) is (or are) coupled efficiently into the next slab.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Applicant: KERN TECHNOLOGIES, LLC
    Inventors: Paul E. Jackson, Gerald L. Kern, Jacob D. Colby, Aaron M. Kern, Tyler P. Schmidt, Keith L. Weiher
  • Patent number: 10811838
    Abstract: A folded slab waveguide laser having a hybrid waveguide-unstable resonator cavity. Multiple slab waveguides of thickness ‘t’ supporting vertical waveguide modes are physically arranged above one another in a stack and optically arranged in series through one or more cavity folding assemblies with curved mirrors. A gain medium such as a gas is arranged in each slab. Each cavity folding assembly is designed to redirect the radiation beam emitted from one slab waveguide into the next waveguide and also at the same time to provide a focus for the radiation beam so that a selected vertical waveguide mode (or modes) is (or are) coupled efficiently into the next slab.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 20, 2020
    Assignee: KERN TECHNOLOGIES, LLC
    Inventors: Paul E Jackson, Gerald L Kern, Jacob D Colby, Aaron M Kern, Tyler P Schmidt, Keith L Weiher
  • Publication number: 20190312403
    Abstract: A folded slab waveguide laser having a hybrid waveguide-unstable resonator cavity. Multiple slab waveguides of thickness ‘t’ supporting vertical waveguide modes are physically arranged above one another in a stack and optically arranged in series through one or more cavity folding assemblies with curved mirrors. A gain medium such as a gas is arranged in each slab. Each cavity folding assembly is designed to redirect the radiation beam emitted from one slab waveguide into the next waveguide and also at the same time to provide a focus for the radiation beam so that a selected vertical waveguide mode (or modes) is (or are) coupled efficiently into the next slab.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 10, 2019
    Applicant: KERN TECHNOLOGIES, LLC
    Inventors: Paul E. Jackson, Gerald L. Kern, Jacob D. Colby, Aaron M. Kern, Tyler P. Schmidt, Keith L. Weiher
  • Patent number: 9813644
    Abstract: An infrared imager includes a first optical component, a second optical component, and at least one thin film dielectric layer. The first optical component has multiple first parallel conductors with a first spacing pattern, aligned in a plane perpendicular to an axis. The second optical component has multiple second parallel conductors with a second spacing pattern, aligned in a plane perpendicular to the axis, angularly offset from the first direction. The thin film dielectric layer includes a refractive index change (RIC) material disposed between and in contact with the first and second parallel conductors. The first optical component, second optical component, and at least one thin film dielectric layer form an antenna array configured to detect one or more predetermined infrared wavelengths based on at least one of the first spacing pattern or the second spacing pattern or the angular offset.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: November 7, 2017
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Paul E. Jackson, Clara R. Baleine, Christopher P. Voita
  • Patent number: 9310601
    Abstract: A system including a first refractive lens doublet comprising a first fixed focal length lens and a first liquid-based lens, the first liquid-based lens responsive to transition between a convex configuration and a concave configuration when electronically actuated, and a second refractive lens doublet comprising a second fixed focal length lens and a second liquid-based lens, the second liquid-based lens responsive to transition from a convex configuration to a concave configuration when electronically actuated. A focal length of the first liquid-based lens and a focal length of the second liquid-based lens are switched between a positive focal length and a negative focal length when electronically actuated to provide a net focal length to produce a varied collimated magnification of light.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 12, 2016
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Paul E. Jackson, Gary C. Vanstone
  • Patent number: 7949022
    Abstract: An integrated, low profile, high power laser light emission device is disclosed. The integrated laser light emission device provides uniform heat dissipation, as well as uniform pumping of the laser gain medium without the need for a pumping cavity. The laser system includes a pump diode array that can be mounted directly to a laser gain medium without intervening correcting optics hardware. Heat generated by the laser light emission device is cooled by a single cooling system. In the laser device, a pump diode array is preferably a Vertical-Cavity Surface-Emitting Laser (VCSEL) array. VCSEL arrays are mounted on the laser gain crystal by a metal cavity frame or metal stilts. The slightly elevated mounting of the VCSEL's enables increased cooling and maximizing the quantity of VCSEL's on the laser gain medium in order to achieve highly efficient and high power laser light output.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 24, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Edward J. Miesak, Paul E. Jackson, Pei-Luen Li
  • Patent number: 7822091
    Abstract: The present invention pertains to a composite slab laser gain medium with an undoped core and at least one doped gain medium section disposed on at least one side of that core. The gain medium is constructed so as to mitigate the effects of thermal and mechanical stresses within it and also allow for impingement cooling of the doped gain medium section.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: October 26, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Paul E. Jackson, Nilo R. Salazar, Frederick G. Baum, Jr.
  • Publication number: 20100008389
    Abstract: The present invention pertains to a composite slab laser gain medium with an undoped core and at least one doped gain medium section disposed on at least one side of that core. The gain medium is constructed so as to mitigate the effects of thermal and mechanical stresses within it and also allow for impingement cooling of the doped gain medium section.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Inventors: Paul E. Jackson, Nilo R. Salazar, Frederick G. Baum, JR.
  • Patent number: 7548575
    Abstract: An apparatus and method for combining a plurality of laser beams to form a single output beam comprising employing a plurality of lasers and optically connecting an image rotator and recoupler to each of the plurality of lasers.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: June 16, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Paul E. Jackson, Gary C. Vanstone, Edward J. Miesak
  • Patent number: 6144687
    Abstract: A laser includes a lasing medium having a slab geometry, a waveguide arrangement either side of the slab, mirrors forming an unstable sub-resonator acting in a plane perpendicular to the waveguide, and a concave mirror arrangement acting on light incident on it launched from the waveguide, and thereby transformed from waveguide light to free space light, to redirect and retransform a portion of said light to be re-entrant waveguide light constituting the unstable sub-resonator round-trip self-replicating light. The unstable sub-resonator preferably includes a folding mirror to direct light towards the concave mirror, and the concave mirror is preferably partially transmissive.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: November 7, 2000
    Assignee: Excitation LLC
    Inventor: Paul E. Jackson
  • Patent number: 6137818
    Abstract: An RF-excited discharge laser includes a pair of electrodes and an RF power source, both electrodes being ungrounded, the power source being adapted to apply an RF voltage to both electrodes, the respective voltages applied to each plate being out of phase. A balanced discharge is thereby established in which the inter-electrode voltage is unchanged whilst the potential difference between each electrode and the surrounding grounded surfaces is halved. Thus, the trade off between discharge power and discharge escape likelihood is overcome. The voltages applied to the electrodes are preferably 180 degrees out of phase, or nearly so. One way of delivering the RF energy to the electrodes is to provide a power splitter to divide the output of the RF supply into two outputs, one of which is delivered to one electrode and the other of which is delivered to the other electrode in substantial anti-phase.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: October 24, 2000
    Assignee: Excitation LLC
    Inventor: Paul E. Jackson