Patents by Inventor Paul F. Keusenkothen

Paul F. Keusenkothen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010581
    Abstract: Processes for upgrading a hydrocarbon-containing feed. The feed and a first particle stream can be contacted under pyrolysis conditions to effect pyrolysis of the feed to produce a pyrolysis effluent that can include olefins and the particles, where coke can be formed on the particles. A first gaseous stream and a second particle stream can be obtained from the pyrolysis effluent. At least a portion of the first gaseous stream can be contacted with oligomerization catalyst particles under oligomerization conditions to effect oligomerization of at least a portion of olefins in the first gaseous stream.
    Type: Application
    Filed: November 17, 2021
    Publication date: January 11, 2024
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen, Ying Liu
  • Patent number: 11857954
    Abstract: Disclosed are novel supported nanoparticle compositions, precursors, processes for making supported nanoparticle compositions, processes for making catalyst compositions, and processes for converting syngas. The catalyst composition can comprise nanoparticles comprising metal oxide(s), such as manganese cobalt oxide. This disclosure is particularly useful for converting syngas via the Fischer-Tropsch reactions to make olefins and/or alcohols.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey C. Bunquin, Joshua J. Willis, Paul F. Keusenkothen, Javier Guzman, Jennifer R. Pena
  • Publication number: 20230416622
    Abstract: Processes and for converting a hydrocarbon-containing feed by pyrolysis and gasification/combustion. The hydrocarbon-containing feed can be heated to produce a heated feed that can be separated into a vapor and a liquid. At least a portion of the vapor and/or at least a portion of the liquid and a particle stream can be fed into a pyrolysis zone and contacted therein to effect pyrolysis of the hydrocarbons and produce a pyrolysis effluent.
    Type: Application
    Filed: November 17, 2021
    Publication date: December 28, 2023
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen, Ying Liu, James R. Lattner
  • Publication number: 20230406700
    Abstract: Processes for converting a hydrocarbon-containing feed by pyrolysis and gasification/combustion. The hydrocarbon-containing feed and heated particles can be fed into a pyrolysis zone and contacted therein to effect pyrolysis of the hydrocarbons and produce a pyrolysis effluent. A gaseous stream rich in olefins and a particle stream rich in particles that include coke disposed thereon can be obtained from the pyrolysis effluent. A CO2-rich stream that includes, on a dry basis, CO2 at a concentration ?90 vol %, based on the total volume of the CO2-rich stream, can be obtained from the gasification/combustion gas mixture.
    Type: Application
    Filed: November 17, 2021
    Publication date: December 21, 2023
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen, Ying Liu
  • Publication number: 20230109131
    Abstract: A method for isomerizing alpha olefins to produce an isomerization mixture comprising branched olefins can comprise contacting an olefinic feed including one or more C10-C20 alpha olefins with a catalyst under skeletal isomerization conditions, wherein the catalyst comprises a molecular sieve having an MRE topology; and obtaining an isomerization mixture comprising one or more C10-C20 branched olefins.
    Type: Application
    Filed: March 22, 2021
    Publication date: April 6, 2023
    Inventors: Sina Sartipi, Wenyih Frank Lai, Roxana Perez Velez, Renyuan Yu, Paul F. Keusenkothen, Zsigmond Varga
  • Publication number: 20230027105
    Abstract: Processes, systems, and apparatus are provided for producing a compressed process gas comprising light olefin such as ethylene. The process utilizes a pyrolysis reactor to produce the process gas. A power generator utilizes a turbine operated based on an Allam cycle to produce shaft power for operating one or more compressors involved in processing of the process gas while producing a reduced or minimized amount of CO2 that is released as a low-pressure gas phase product. Examples of using the shaft power for processing of the process gas can include compressing the process gas a process gas compressor powered by the produced shaft power and cooling the process gas using a refrigeration compressor powered by the produced shaft power.
    Type: Application
    Filed: December 18, 2020
    Publication date: January 26, 2023
    Inventors: Mark A. Rooney, Paul F. Keusenkothen
  • Publication number: 20230016743
    Abstract: Processes and systems for converting a hydrocarbon-containing feed. The feed and heated particles can be contacted within a pyrolysis zone to effect pyrolysis of at least a portion of the feed to produce a pyrolysis zone effluent and a first gaseous stream rich in olefins and a first particle stream rich in the particles can be obtained therefrom. At least a portion of the first particle stream, an oxidant, and steam can be fed into a gasification zone and contacted therein to effect gasification of at least a portion of coke disposed on the surface of the particles to produce a gasification zone effluent. A second gaseous stream rich in a synthesis gas and a second particle stream rich in heated and regenerated particles can be obtained from the gasification zone effluent. At least a portion of the second particle stream can be fed into the pyrolysis zone.
    Type: Application
    Filed: November 11, 2020
    Publication date: January 19, 2023
    Inventors: Mohsen N. Harandi, Michael F. Raterman, Paul F. Keusenkothen
  • Publication number: 20220401924
    Abstract: An active material useful in an oxidative dehydrogenation reactor system has an active phase, a support phase, and an intermediate composite phase. The active phase includes a transition metal oxide such as manganese oxide, which is reversibly oxidizable and/or reducible between oxidized and reduced states. The support phase includes an oxide of a IUPAC Group 2-14 element. The composite phase is a mixed metal oxide of the transition metal and the Group 2-14 element. The active phase can also include a promoter such as Na-W04 and/or a selectivity modifier such as A1 or ceria. Also, a reactor including the active material in a reactor, a method of making the active material, and a method of using the active material in a regenerative reaction process.
    Type: Application
    Filed: July 30, 2020
    Publication date: December 22, 2022
    Inventors: Brian M. P. Weiss, Changmin Chun, Sophie Liu, Federico Barrai, Paul F. Keusenkothen, Zachary D. Young
  • Publication number: 20220274081
    Abstract: A method and apparatus for conversion of petroleum resid fluid through atomization and pyrolysis, including: generating a stream of atomized resid fluid; and delivering the stream to a plurality of cracking particles, wherein the cracking particles have a temperature from 700° C. to 1200° C. when the stream is delivered. Generating the stream of atomized resid fluid may include: delivering heated resid fluid to a nozzle; and delivering diluent fluid to the nozzle. A method and apparatus includes: a first multi-phase fluid application device configured to generate a first stream of atomized resid fluid; a port configured to guide a plurality of cracking particles to intersect the first stream; and a particle heating component configured to heat the cracking particles before the particles intersect the first stream.
    Type: Application
    Filed: June 17, 2020
    Publication date: September 1, 2022
    Inventors: Paul F. Keusenkothen, Zachary D. Young, Mohsen N. Harandi
  • Publication number: 20220275283
    Abstract: Processes and systems for upgrading a hydrocarbon-containing feed. The hydrocarbon containing feed and a plurality of fluidized particles can be fed into a pyrolysis reaction zone. The plurality of fluidized particles can have a first temperature that can be sufficiently high to enable pyrolysis of at least a portion of the hydrocarbon-containing feed on contacting the particles. The particles can include an oxide of a transition metal element capable of oxidizing molecular hydrogen at the first temperature. The hydrocarbon-containing feed can be contacted with the particles in the pyrolysis reaction zone to effect pyrolysis of at least a portion of the hydrocarbon-containing feed to produce a pyrolysis effluent. At least a portion of the transition metal element in the particles in the pyrolysis effluent can be at a reduced state compared to the transition metal element in the particles fed into the pyrolysis reaction zone.
    Type: Application
    Filed: July 30, 2020
    Publication date: September 1, 2022
    Inventors: Michael F. Raterman, Mohsen N. Harandi, Paul F. Keusenkothen, David B. Spry
  • Publication number: 20220274085
    Abstract: A reverse flow reactor (RFR) and process having a forward reaction feed cycle, a reverse reaction feed cycle, and a reverse regeneration cycle. The heat convected in the forward feed cycle matches the heat convected in the reverse flow cycles. Compared to an RFR without the reverse feed cycle, the three-cycle RPR substantially reduces the regeneration air flow rate, associated compression requirements, and the overall reactor volume, that are required.
    Type: Application
    Filed: July 30, 2020
    Publication date: September 1, 2022
    Inventors: Brian M. Weiss, Changmin Chun, Sophie Liu, Federico Barrai, Paul F. Keusenkothen, Zachary D. Young
  • Publication number: 20220176365
    Abstract: Disclosed are novel supported nanoparticle compositions, precursors, processes for making supported nanoparticle compositions, processes for making catalyst compositions, and processes for converting syngas. The catalyst composition can comprise nanoparticles comprising metal oxide(s), such as manganese cobalt oxide. This disclosure is particularly useful for converting syngas via the Fischer-Tropsch reactions to make olefins and/or alcohols.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 9, 2022
    Inventors: Jeffrey C. Bunquin, Joshua J. Willis, Paul F. Keusenkothen, Javier Guzman, Jennifer R. Pena
  • Patent number: 11352567
    Abstract: Processes for converting an organic-material-containing feed comprising contacting the feed with a plurality of fluidized hot particles in a pyrolysis zone to product a first pyrolysis effluent, optionally contacting the first pyrolysis effluent with a quenching stream to impart additional pyrolysis of organic materials contained in the quenching stream, separating at least a portion of the particles and feeding them to a combustion zone where the particles are heated to an elevated temperature, optionally contacting the combustion zone effluent with a second organic-material-containing stream to produce, e.g., syngas, and feeding at least a portion of the heated particles to the pyrolysis zone.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen
  • Publication number: 20220161243
    Abstract: Disclosed are novel catalyst compositions, catalyst precursors, processes for making catalyst precursors, processes for making catalyst compositions, and processes for converting syngas. The catalytic component in the catalyst composition can comprise a metal carbide and/or a metal nitride. This disclosure is particularly useful for converting syngas via the Fischer-Tropsch reactions to make olefins and/or alcohols.
    Type: Application
    Filed: February 6, 2020
    Publication date: May 26, 2022
    Inventors: Jeffrey C. Bunquin, Partha Nandi, Paul F. Keusenkothen, Vera Grankina, Robert Panepinto
  • Patent number: 11332420
    Abstract: Processes are described for isomerizing one or more C14-C24 alpha olefins to produce an isomerization mixture comprising one or more C14-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C14-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate having an MWW framework. The resulting isomerization mixture typically exhibits a low pour point with maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 17, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ronald Raymond Hill, Jr., Renyuan Yu, Elizabeth G. Mahoney, Anatoly I. Kramer, Wenyih F. Lai, Paul F. Keusenkothen, Nan Hu, Andrew P. Broenen, James R. Lattner
  • Publication number: 20220098495
    Abstract: Disclosed are process and system for making an asphalt product and an olefin product from an asphaltenes-rich feed without using a vacuum distillation column. The feed is first deep stripped in a first stripping column using a stripping vapor such as steam and/or a C2-C3 paraffins-rich stream to obtain a bottoms liquid effluent having a high cutpoint and an overheads effluent comprising gas oil, lighter hydrocarbons, and the stripping vapor. The high-boiling point bottoms liquids effluent, with optional additional separation and/or treatment, can be used as asphalt products. The overheads effluent, with optional additional separation, can be fed into a pyrolysis furnace cracker, where it is converted into a cracker product mixture comprising olefins, lighter hydrocarbons, hydrogen, and the like, which can be recovered in a products recovery subsystem.
    Type: Application
    Filed: January 17, 2020
    Publication date: March 31, 2022
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen
  • Patent number: 11254882
    Abstract: A catalyst and corresponding methods of using a catalyst are provided that can be beneficial for conversion of paraffins into a product stream enriched in aromatics and/or methane while reducing or minimizing the content of ethane in the product stream. Such catalysts and methods can be useful, for example, for processing a raw gas, associated gas, tail gas, natural gas, or other type of methane-containing feed stream to convert C2+ hydrocarbons in the stream to heavier hydrocarbons and methane while reducing or minimizing content of ethane in the products from the conversion reaction. Such conversion can be useful for upgrading a methane-containing feed stream to have an energy content that is suitable for pipeline transport under one or more specifications for transport of natural gas. The catalyst and corresponding method can also be beneficial when used as a second stage catalyst in a configuration involving multiple conversion stages.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: February 22, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 11203557
    Abstract: The invention relates to catalysts and their use in processes for dehydrocyclization of light paraffinic hydrocarbon feedstock to higher-value hydrocarbon, such as aromatic hydrocarbon, to dehydrocyclization catalysts useful in such processes, and to the methods of making such catalysts. One of more of the dehydrocyclization catalysts comprising a crystalline aluminosilicate zeolite having a constraint index of less than or equal to about 12, at least one Group 3 to Group 13 metal of the IUPAC Periodic Table and phosphorous.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 21, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Samia Ilias, Mayank Shekhar, Paul F. Keusenkothen, John S. Buchanan
  • Patent number: 11072749
    Abstract: A novel process/system for flexibly producing chemicals and fuels from a petroleum feed such as crude comprise a flashing drum, a first cracker (e.g., a fluidized bed pyrolysis cracker or an oxidative cracker), and an olefin-to-gasoline reaction zone. The process/system can also include a steam cracker and a hydrotreater. The process/system can convert crude oil into hydrogen, C2-C4 olefins, gas oil and distillates with various amounts by adjusting the cut point of the bottoms effluent exiting the flashing drum.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: July 27, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohsen N. Harandi, Paul F. Keusenkothen
  • Patent number: 10913042
    Abstract: Systems and methods are provided for conversion of light paraffinic gases to form liquid products in a process performed in a fixed bed radial-flow reactor. The light paraffins can correspond to C3+ paraffins. Examples of liquid products that can be formed include C6-C12 aromatics, such as benzene, toluene, and xylene. The fixed bed radial-flow reactor can allow for improved control over the reaction conditions for paraffin conversion in spite of the fixed bed nature of the reactor. This can allow the process to operate with improved efficiency while reducing or minimizing the complexity of operation relative to non-fixed bed reactor systems.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 9, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Arsam Behkish, David W. Maher, Paul F. Keusenkothen, Jaime A. Valencia