Patents by Inventor Paul H. Cutler

Paul H. Cutler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9147790
    Abstract: The present invention is a method and apparatus for receiving and converting incident radiation into DC current. The method begins with selection of an antenna having a terminal tip with a sharp edge. The antenna is layered with a substrate and a first coating. A first electrode and a metallic/mCNT antenna are layered on the first coating, and a plasmonic layer is then added. A gap is formed which is bounded on one side by the terminal ends of the plasmonic layer and the first coating, and a second electrode and a second coating on the other. The second electrode is layered upon the second coating which is layered upon the substrate. A set of AC currents is induced along the length of the antenna. The method then calculates whether or not the induced AC currents are large enough to create voltages for field emission. If the voltages are large enough, then a forward bias and a reverse bias are initiated.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: September 29, 2015
    Assignee: Scitech Associates Holdings, Inc.
    Inventor: Paul H. Cutler
  • Publication number: 20150236185
    Abstract: The present invention is a method and apparatus for receiving and converting incident radiation into DC current. The method begins with selection of an antenna having a terminal tip with a sharp edge. The antenna is layered with a substrate and a first coating. A first electrode and a metallic/mCNT antenna are layered on the first coating, and a plasmonic layer is then added. A gap is formed which is bounded on one side by the terminal ends of the plasmonic layer and the first coating, and a second electrode and a second coating on the other. The second electrode is layered upon the second coating which is layered upon the substrate. A set of AC currents is induced along the length of the antenna. The method then calculates whether or not the induced AC currents are large enough to create voltages for field emission. If the voltages are large enough, then a forward bias and a reverse bias are initiated.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Inventor: Paul H. CUTLER
  • Publication number: 20140085148
    Abstract: The present invention is a method and apparatus for receiving and converting incident radiation into DC current. The method begins with selection of an antenna having a terminal tip with a sharp edge. The antenna is layered with a substrate and a first coating. A first electrode and a metallic/mCNT antenna are layered on the first coating, and a plasmonic layer is then added. A gap is formed which is bounded on one side by the terminal ends of the plasmonic layer and the first coating, and a second electrode and a second coating on the other. The second electrode is layered upon the second coating which is layered upon the substrate. A set of AC currents is induced along the length of the antenna. The method then calculates whether or not the induced AC currents are large enough to create voltages for field emission. If the voltages are large enough, then a forward bias and a reverse bias are initiated.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Inventor: PAUL H. CUTLER
  • Patent number: 8299655
    Abstract: The present invention is a method and apparatus for receiving and converting incident radiation into DC current. The method begins with selection of an antenna having a terminal tip with a sharp edge. The antenna is layered with a substrate and a first coating. A first electrode and a metallic/mCNT antenna are layered on the first coating, and a plasmonic layer is then added. A gap is formed which is bounded on one side by the terminal ends of the plasmonic layer and the first coating, and a second electrode and a second coating on the other. The second electrode is layered upon the second coating which is layered upon the substrate. A set of AC currents is induced along the length of the antenna. The method then calculates whether or not the induced AC currents are large enough to create voltages for field emission. If the voltages are large enough, then a forward bias and a reverse bias are initiated.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 30, 2012
    Assignee: Scitech Associates Holdings, Inc.
    Inventor: Paul H. Cutler
  • Patent number: 7799988
    Abstract: A device for receiving and converting incident radiation into DC current, the device including a transparent conductor, at least one point-contact diode, the at least one point-contact diode having a nanowire/mCNT providing a receiving antenna function and a rectification function, a thin insulating layer situated between the transparent conductor and the nanowire/mCNT, and a point contact junction at which the nanowire/mCNT contacts the thin insulating layer.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: September 21, 2010
    Inventor: Paul H. Cutler
  • Publication number: 20090308443
    Abstract: A device for receiving and converting incident radiation into DC current, the device including a transparent conductor, at least one point-contact diode, the at least one point-contact diode having a nanowire/mCNT providing a receiving antenna function and a rectification function, a thin insulating layer situated between the transparent conductor and the nanowire/mCNT, and a point contact junction at which the nanowire/mCNT contacts the thin insulating layer.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Inventor: Paul H. Cutler