Patents by Inventor Paul H. Schipper

Paul H. Schipper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5128108
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added to the existing regenerator vessel, and spent catalyst is discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor for direct contact heat exchange. Catalyst coolers may be used on catalyst recycle lines to the coke combustor, or on the line returning regenerated catalyst to the cracking reactor.
    Type: Grant
    Filed: July 5, 1991
    Date of Patent: July 7, 1992
    Assignee: Mobile Oil Corporation
    Inventors: Martley Owen, Paul H. Schipper
  • Patent number: 5100534
    Abstract: An improved process for upgrading paraffinic naphtha to high octane fuel by contacting a naphtha feedstock, such as virgin naphtha feedstock stream containing predominantly C.sub.7 -C.sub.12 alkanes and naphthenes, with solid medium pore acid zeolite cracking catalyst under low pressure selective cracking conditions effective to produce at least 10 wt % selectivity C.sub.4 -C.sub.5 isoalkene. Cracking effluent is separated to obtain a light olefinic fraction rich in C.sub.4 -C.sub.5 isoalkene and a C.sub.6 + liquid fraction of enhanced octane value containing less than 50 wt % aromatic hydrocarbons. In a multistage operation enhanced octane products are obtained by etherifying the isoalkene fraction and by contacting the C.sub.6 + normally liquid fraction with reforming catalyst under moderate reforming conditions at elevated temperature to obtain a reformate product of enhanced octane value.
    Type: Grant
    Filed: November 6, 1990
    Date of Patent: March 31, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Paul H. Schipper, Hartley Owen
  • Patent number: 5100533
    Abstract: Process and apparatus for upgrading paraffinic naphtha to high octane fuel by contacting a fresh virgin naphtha feedstock stream medium pore acid cracking catalyst comprising MCM-22 zeolite under low pressure selective cracking conditions effective to produce increased yield of total C4-C5 branched aliphatic hydrocarbhons. The preferred feedstock is straight run naptha containing C7+ alkanes, at least 15 wt % C7+ cycloaliphatic hydrocarbons and less than 20% aromatics, which can be converted with a fluidized bed catalyst in a vertical riser reactor during a short contact period.The isoalkene products of cracking are etherified to provide high octane fuel components.
    Type: Grant
    Filed: November 1, 1990
    Date of Patent: March 31, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Hartley Owen, Paul H. Schipper
  • Patent number: 5077251
    Abstract: A process for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor. Second stage catalyst regeneration occurs in the second fluidized bed. The amount of combustion air added to, and conditions in, the coke combustor are controlled to limit CO combustion, while the second stage of regeneration, in the second fluidized bed, achieves complete CO combustion. Controlled multi-stage regeneration reduces steaming or deactivation of catalyst during regeneration, increase coke burning capacity, and reduces NOx emissions.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: December 31, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5077252
    Abstract: A process and apparatus for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor. Second stage catalyst regeneration occurs in the second fluidized bed. The amount of combustion air added to both regeneration stages is set to maintain partial CO combustion in both stages. Controlled multi-stage regeneration reduces the steaming or deactivation of catalyst during regeneration, maximizes coke burning capacity of the regenerator, and minimizes or eliminates NOx emissions.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: December 31, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5077253
    Abstract: A layered catalyst contains a core of at least one, and preferably three, molecular sieve components within a shell layer of reduced molecular sieve content. A preferred catalyst consists of a core of a large pore molecular sieve, preferably a dealuminized Y-type zeolite, a shape selective paraffin cracking/isomerization component, preferably HZSM-5, and a shape selective aliphatic aromatization component, preferably gallium ZSM-5, within a shell of an alumina-rich, matrix. The shell can capture metals from the feeds being processed, it can act as a metals sink, and can remove metals from the unit by attrition. The catalyst is preferably prepared by forming the core and then coating or encapsulating the core with a shell having a reduced molecular sieve content. The shell may contain a pillared clay or other very large pore cracking component. The shell may be an attritable coating of an amorphous rare earth oxide, aluminum oxide and aluminum phosphate composite, which traps metals.
    Type: Grant
    Filed: May 1, 1990
    Date of Patent: December 31, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Pochen Chu, Albin Huss, Jr., Hartley Owen, Joseph A. Herbst, Garry W. Kirker, Paul H. Schipper
  • Patent number: 5066627
    Abstract: A process for simultaneously heating and cooling of spent FCC catalyst during regeneration in a high efficiency FCC regenerator, one using a fast fluidized bed coke combustor. The coke combustor burns coke from spent catalyst in a turbulent or fast fluidized bed, and discharges catalyst and flue gas up into a dilute phase transport riser. Catalyst is separated into flue gas and a bubbling dense bed of catalyst. The coke combustor is heated by recycling hot catalyst from the bubbling dense bed and simultaneously cooled by a backmixed heat exchanger. Catalyst flows from the combustor to the cooler and is displaced back into the combustor by adding air to the catalyst in the cooler. Heating promotes rapid coke combustion, while cooling reduces thermal and hydrothermal deactivation of the spent catalyst.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: November 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5062945
    Abstract: A method and apparatus are disclosed to reduce the amount of unstripped hydrocarbon flowing to the regenerator in an FCC unit. The catalyst stripper section is heated by indirect heat exchange with a mixture of hot regenerator flue gas and regenerated catalyst.
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: November 5, 1991
    Assignee: Mobil Oil Corporation
    Inventors: David A. Pappal, Paul H. Schipper
  • Patent number: 5055176
    Abstract: A catalytic cracking catalyst and process are disclosed using a catalyst containing: a matrix, a large pore molecular sieve, a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst comprises dealuminized zeolite Y, optionally containing rare earth elements, HZSM-5, and gallium ZSM-5 in a matrix. The matrix contains and protects the relatively fragile zeolite components and acts as a sodium and metals sink. The large pore molecular sieve cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore molecular sieve. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g., ZSM-5 with a controlled amount of an aromatization component such as gallium, may promote both paraffin cracking/isomerization and aromatization.
    Type: Grant
    Filed: December 18, 1990
    Date of Patent: October 8, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 5055437
    Abstract: A catalytic cracking catalyst mixture and process are disclosed. The mixture comprises (a) a cracking catalyst containing a matrix and a large pore molecular sieve and (b) separate additive catalysts comprising at least one of a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst mixture comprises dealuminized zeolite Y, optionally containing rare earth elements in an alumina-rich matrix, an additive catalyst of HZSM-5 in a matrix, and an additional additive catalyst of gallium ZSM-5 in a matrix. The alumina-rich matrix of the cracking catalyst acts a a sodium and metals sink. The large pore molecular sieve catalyst cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore moleular sieve. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: October 8, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 5053204
    Abstract: A catalytic cracking process and apparatus operates with multiple feed injection points to a riser reactor with several enlarged regions. An elutriable catalyst mixture is used, comprising a conventionally sized cracking catalyst and a faster settling, shape selective additive cracking catalyst. Straight run naphtha, and a light, H.sub.2 -rich aliphatic stream are added to the base of a riser reactor. A resid feed is added higher up in the riser, with a gas oil and recycled heavy cycle oil and naphtha streams added even higher up in the riser. The riser has an elutriating base, and an elutriating upper portion, which increase residence time of the shape selective zeolite additive relative to the conventionally sized cracking catalyst.
    Type: Grant
    Filed: March 28, 1990
    Date of Patent: October 1, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 5047140
    Abstract: A process and apparatus are disclosed for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added alongside an existing regenerator vessel, and spent catalyst is discharged into a transfer pot beneath the existing dense bed, then into the coke combustor. Catalyst is regenerated in a turbulent or fast fluidized bed, and discharged into the dilute phase region above the existing bubbling dense bed. The discharge line preferably encompasses, and is in a heat exchange relationship with, the spent catalyst standpipe. Discharge catalyst is collected in the bubbling dense bed surrounding the coke combustor, and may be given an additional stage of regeneration. Catalyst may be recycled from the dense bed to the transfer pot.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: September 10, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5043055
    Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. Hot catalyst stripping is achieved by lifting regenerated catalyst into the conventional stripper or to a secondary catalyst stripper under the primary stripper. Spent catalyst is heated by direct contact heat exchange with hot regenerated catalyst. Three different types of lift gas may be used to transport catalyst from the regenerator to the hot stripper, a light reactive hydrocarbon, an inert, or steam.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: August 27, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5037538
    Abstract: Oxides of nitrogen (NO.sub.x) emissions from an FCC regenerator are reduced by adding a DeNO.sub.x catalyst to the FCC regenerator in a form whereby the DeNO.sub.x catalyst remains segregated within the FCC regenerator. This permits use of a DeNO.sub.x catalyst without regard to the effect of the DeNO.sub.x catalyst on the catalytic cracking reaction. Floating hollow spheres, or catalyst fines, containing the DeNO.sub.x catalyst are preferred.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: August 6, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Arthur A. Chin, Jonathan E. Child, Paul H. Schipper
  • Patent number: 5032251
    Abstract: A process and apparatus for achieving turbulent or fast fluidized bed regeneration of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A closed coke combustor vessel is added to the existing regenerator vessel, and spent catalyst is discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor. Catalyst may be recycled from the dense bed to the coke combustor for direct contact heat exchange. Catalyst coolers may be used on catalyst recycle lines to the coke combustor, or on the line returning regenerated catalyst to the cracking reactor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5032252
    Abstract: A process and apparatus for achieving multistage, hot catalyst stripping of spent FCC catalyst in a bubbling bed regenerator having a stripper mounted over the regenerator and a stripped catalyst standpipe within the regenerator. A secondary or hot catalyst stripper is placed under the primary stripper and within the existing regenerator vessel. Spent catalyst from the primary stripper is heated in the secondary stripper by at least one of immersion in the bubbling dense bed of hot regenerated catalyst, addition of hot regenerated catalyst recovered from the discharged into the coke combustor and regenerated in a turbulent or fast fluidized bed, and discharged up into a dilute phase transport riser which preferably encompasses, and is in a countercurrent heat exchange relationship with, the spent catalyst standpipe. Regenerated catalyst is discharged from the dilute phase transport riser, and collected in the bubbling dense bed surrounding the coke combustor.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: July 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5011592
    Abstract: A process for controlled, multi-stage regeneration of FCC catalyst is disclosed. A modified high efficiency catalyst regenerator, with a fast fluidized bed coke combustor, dilute phase transport riser, and second fluidized bed regenerates the catalyst in at least two stages. The primary stage of regeneration is in the coke combustor, at full CO oxidation conditions. The second stage of catalyst regeneration occurs in the second fluidized bed, at partial CO combustion conditions. The process permits regeneration of spent FCC catalyst while minimizing NOx exmissions and achieving significant reduction of SOx.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: April 30, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Paul H. Schipper
  • Patent number: 5006497
    Abstract: A catalytic cracking catalyst and process are disclosed using a catalyst containing: a matrix, a large pore molecular sieve, a shape selective paraffin cracking/isomerization zeolite and a shape selective aliphatic aromatization zeolite. An exemplary catalyst comprises dealuminized zeolite Y, optionally containing rare earth elements, HZSM-5, and gallium ZSM-5 in a matrix. The matrix contains and protects the relatively fragile zeolite components and acts as a sodium and metals sink. The large pore molecular sieve cracks large hydrocarbons to lighter paraffins and olefins. The shape selective paraffin cracking/isomerization component cracks/isomerizes the paraffins produced by the large pore molecular seive. The shape selective aliphatic aromatization catalyst converts light paraffins and olefins into aromatics. A single shape selective zeolite, e.g., ZSM-5 with a controlled amount of an aromatization component such as gallium, may promote both paraffin cracking/isomerization and aromatization.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: April 9, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper
  • Patent number: 4994173
    Abstract: Modified ZSM-5 type zeolite catalyst is prepared by controlled aging in a moving bed catalytic cracking unit. The modified catalyst exhibits significant olefin isomerization activity and reduced paraffin cracking activity. Hydrocarbons are cracked to products boiling in the motor fuel range, e.g., gasoline, by using the modified catalyst mixture comprising a ZSM-5 type zeolite and a conventional cracking catalyst. The ZSM-5 type zeolite is treated with partial pressure steam under conditions which increase the gasoline octane number of the product fuel without decreasing gasoline plus distillate yield. A process for changing a catalytic cracking unit's inventory from a conventional catalyst to a modified ZSM-5 type containing catalyst is also disclosed.
    Type: Grant
    Filed: January 25, 1990
    Date of Patent: February 19, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Chou Tai-Sheng, Frederick J. Krambeck, Paul H. Schipper
  • Patent number: 4990314
    Abstract: A fluid catalytic cracking (FCC) process and apparatus which employs relatively more elutriatable catalyst particles comprising intermediate pore zeolite, particularly ZSM-5, and relatively less elutriatable catalyst particles comprising large pore zeolite, preferably zeolite Y. The process and apparatus employ a first stripping vessel which also separates a more elutriatable first portion of catalyst from a less elutriatable second portion of catalyst. The more elutriatable first portion passes to a second stripping vessel, and subsequently recycles to a fluid catalytic cracking reactor riser. The second portion of less elutriatable catalyst passes from the first stripping vessel to a fluid catalytic cracking regenerator vessel and, after being regenerated, recycles to the reactor riser. The more elutriatable first portion contains a higher ratio of intermediate pore catalyst particles to large pore catalyst particles than does the second portion.
    Type: Grant
    Filed: November 15, 1988
    Date of Patent: February 5, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Joseph A. Herbst, Hartley Owen, Paul H. Schipper