Patents by Inventor Paul Joseph Andersen

Paul Joseph Andersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160236147
    Abstract: A catalytic material for treating an exhaust gas produced by a natural gas engine, which catalytic material comprises a molecular sieve and a platinum group metal (PGM) supported on the molecular sieve, wherein the molecular sieve has a framework comprising silicon, oxygen and optionally germanium, and has a content of heteroatom T-atoms is ?about 0.20 mol %.
    Type: Application
    Filed: January 15, 2016
    Publication date: August 18, 2016
    Inventors: Hai-Ying CHEN, Joseph Michael FEDEYKO, Jing LU, Paul Joseph ANDERSEN, Arthur Joseph REINING, Rita AIELLO
  • Publication number: 20160038876
    Abstract: Provided is a system for treating a flowing exhaust gas comprising a lean NOx trap, a catalyzed soot filter, an ammonia or an ammonia precursor metering system for metering ammonia or an ammonia precursor into the flowing exhaust gas; and an SCR catalyst, wherein the SCR catalyst is disposed downstream of the lean NOx trap and comprises copper and/or iron supported on a small pore molecular sieve.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Inventors: Paul Joseph Andersen, Hai-Ying CHEN, Joseph Michael FEDEYKO, Erich Weigert
  • Patent number: 9227176
    Abstract: Provided is a catalyst article for treating an emission gas comprising (a) a noble metal catalyst layer comprising one or more noble metals disposed on a first refractory metal oxide support; and (b) a vanadium catalyst layer comprising vanadium pre-fixed on a second refractory metal oxide support selected from alumina, titania, zirconia, ceria, silica, and mixtures of these, wherein the first catalyst layer is in physical contact with said second catalyst layer. Also provided is a method for making such a catalyst article, a method for treating gas emissions using such an article, and an emission gas treatment system incorporating such an article.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 5, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Kevin Doura
  • Publication number: 20150352492
    Abstract: An ammonia slip catalyst having an SCR catalyst and an oxidation catalyst comprising at least two metals, each of which is selected from a specific group, and a substrate upon which at least oxidation catalyst is located is described. The ammonia slip catalyst can have dual layers, with one of the layers containing an SCR catalyst, a second layer containing the oxidation catalyst with comprises at least two metals, each of which is selected from a specific group, and the ammonia slip catalyst does not contain a platinum group metal. Methods of making and using the ammonia slip catalyst to reduce ammonia slip are described.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 10, 2015
    Inventors: Paul Joseph ANDERSEN, Kevin DOURA
  • Publication number: 20150343422
    Abstract: Articles comprising a catalyst film comprising VOx, MoO3 or WO3, and TiO2 deposited on a substrate are disclosed. The articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases. Methods for producing such articles deposit a catalyst film on the substrate to form a coated substrate, which is then calcined. When used in an SCR process, the coated articles have enhanced activity for NOx conversion, reduced activity for SOx conversion, or both. Light-weight, coated articles having high catalyst loads can be fabricated at the same or reduced dimensions when compared with laminated articles, and increased kNOx/kSOx ratios are available even from coated articles having relatively thin catalyst films. The articles should have particular value for power plant operations, where coal and high-sulfur fuels are commonly used and controlling sulfur trioxide generation is critical.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 3, 2015
    Inventors: Silvia Alcove CLAVE, Michael NASH, Paul Joseph ANDERSEN, Maria BRANDMAIR, Rodney FOO, Alison Mary WAGLAND, Bruce GOMERSALL
  • Patent number: 9199195
    Abstract: A method of using a catalyst comprises exposing a catalyst to at least one reactant in a chemical process. The catalyst comprises copper and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms. The chemical process undergoes at least one period of exposure to a reducing atmosphere. The catalyst has an initial activity and the catalyst has a final activity after the at least one period of exposure to the reducing atmosphere. The final activity is within 30% of the initial activity at a temperature between 200 and 500° C.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: December 1, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Hai-Ying Chen, Joseph Michael Fedeyko, Erich Weigert
  • Patent number: 9114376
    Abstract: Provided are catalysts comprising a small pore molecular sieve embedded with platinum group metal (PGM) and methods for treating lean burn exhaust gas using the same.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 25, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joseph Michael Fedeyko, Hai-Ying Chen, Paul Joseph Andersen
  • Publication number: 20150217282
    Abstract: Provided are catalysts comprising a small pore molecular sieve embedded with PGM and methods for treating lean burn exhaust gas using the same.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Inventors: Joseph Michael FEDEYKO, Hai-Ying CHEN, Paul Joseph ANDERSEN
  • Patent number: 9040003
    Abstract: A three way catalyst includes an extruded solid body having by weight: 10-100% of at least one binder/matrix component; 5-90% of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% optionally stabilised ceria. The catalyst also includes at least one precious metal and optionally at least one non-precious metal, wherein: (i) the at least one precious metal is carried in one or more coating layer(s) on the body surface; (ii) at least one metal is present throughout the body and at least one precious metal is carried in one or more coating layer(s) on a body surface; or (iii) at least one metal is present throughout the body, is present in a higher concentration at a body surface, and at least one precious metal is carried in one or more coating layer(s) on the body surface.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: May 26, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Publication number: 20150118115
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Publication number: 20150118114
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Jr and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Publication number: 20150118121
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 30, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Publication number: 20150110682
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 23, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: HAI-YING CHEN, JOSEPH MICHAEL FEDEYKO, RODNEY KOK SHIN FOO, PAUL JOSEPH ANDERSEN, JILLIAN ELAINE COLLIER, JOHN LEONELLO CASCI, RAJ RAO RAJARAM
  • Publication number: 20150037233
    Abstract: Provided is an ammonia slip catalyst article having supported palladium in a top or upstream layer for oxidation of carbon monoxide and/or hydrocarbons, an SCR catalyst either in the top layer or in a separate lower or downstream layer, and an ammonia oxidation catalyst in a bottom layer. Also provided are methods for treating an exhaust gas using the catalyst article, wherein the treatment involves reducing the concentrations of ammonia and optionally carbon monoxide and/or hydrocarbons in the exhaust gas.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventors: Joseph Michael Fedeyko, Kevin Doura, Erich Conlan Weigert, Julian Peter Cox, Hai-Ying Chen, Paul Joseph Andersen
  • Patent number: 8906820
    Abstract: A method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joseph Michael Fedeyko, Rodney Kok Shin Foo, John Leonello Casci, Hai-Ying Chen, Paul Joseph Andersen, Jillian Elaine Collier, Raj Rao Rajaram
  • Publication number: 20140248203
    Abstract: A method of using a catalyst comprises exposing a catalyst to at least one reactant in a chemical process. The catalyst comprises copper and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms. The chemical process undergoes at least one period of exposure to a reducing atmosphere. The catalyst has an initial activity and the catalyst has a final activity after the at least one period of exposure to the reducing atmosphere. The final activity is within 30% of the initial activity at a temperature between 200 and 500° C.
    Type: Application
    Filed: April 25, 2014
    Publication date: September 4, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Hai-Ying CHEN, Joseph Michael FEDEYKO, Erich Weigert
  • Publication number: 20140212350
    Abstract: A catalyst article for treating an emission gas is provided comprising (a) a first catalyst layer having a plurality of consecutive sub-layers, wherein each sub-layer includes vanadium on a first refractory metal oxide support selected from alumina, titania, zirconia, ceria, silica, and mixtures of these; (b) a second catalyst layer comprising one or more noble metals disposed on a second refractory metal oxide support; and (c) a substrate, wherein the first and second catalyst layers are on and/or within the substrate.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: PAUL JOSEPH ANDERSEN, KEVIN DOURA
  • Patent number: 8758460
    Abstract: A catalyst composition for the oxidation of carbon monoxide and volatile organic compounds and for hydrogenation reactions comprises at least two different high surface area oxide support materials wherein at least one of the high surface area support material supports at least one base metal promoter.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: June 24, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Rita Aiello, Paul Joseph Andersen
  • Publication number: 20140170045
    Abstract: Provided are catalysts comprising a small pore molecular sieve embedded with platinum group metal (PGM) and methods for treating lean burn exhaust gas using the same.
    Type: Application
    Filed: June 5, 2012
    Publication date: June 19, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Joseph Michael Fedeyko, Hai-Ying Chen, Paul Joseph Andersen
  • Patent number: 8753598
    Abstract: A method of using a catalyst comprises exposing a catalyst to at least one reactant in a chemical process. The catalyst comprises copper and a small pore molecular sieve having a maximum ring size of eight tetrahedral atoms. The chemical process undergoes at least one period of exposure to a reducing atmosphere. The catalyst has an initial activity and the catalyst has a final activity after the at least one period of exposure to the reducing atmosphere. The final activity is within 30% of the initial activity at a temperature between 200 and 500° C.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 17, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Hai-Ying Chen, Joseph Michael Fedeyko, Erich Weigert