Patents by Inventor Paul Nuyujukian

Paul Nuyujukian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346884
    Abstract: Methods of modulating dissociative and associative states in a subject are provided. In particular, neuromodulation of rhythmic neural activity in the posteromedial cortex can be used to induce or inhibit dissociative states in a subject.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 2, 2023
    Inventors: Ethan B. Richman, Josef Parvizi, Jaimie M. Henderson, Paul Nuyujukian, Felicity Gore, Isaac V. Kauvar, Sam Vesuna, Karl A. Deisseroth
  • Publication number: 20230310857
    Abstract: Systems and methods for seizure detection in accordance with embodiments of the invention are illustrated. One embodiment includes an automated seizure treatment system, including an electroencephalogram (EEG) device configured to record neural activity from a brain of a patient, a treatment device, a processor, and a memory, the memory containing a seizure detection application that configures the processor to obtain an EEG signal from the EEG device, calculate an inverse compression ratio based on the EEG signal, and when the inverse compression ratio is greater than a classification threshold, deliver treatment capable of stopping the seizure to the patient using the treatment device.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 5, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Paul Nuyujukian, Lisa Yamada
  • Patent number: 9471870
    Abstract: A brain machine interface (BMI) for restoring performance of poorly performing decoders is provided. The BMI has a decoder for decoding neural signals for controlling the brain machine interface. The decoder separates in part neural signals associated with a direction of movement and neural signals associated with a speed of movement of the brain machine interface. The decoder assigns relatively greater weight to the neural signals associated with a direction of movement.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: October 18, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jonathan C. Kao, Chethan Pandarinath, Paul Nuyujukian, Krishna V. Shenoy
  • Publication number: 20160224891
    Abstract: A brain machine interface (BMI) for restoring performance of poorly performing decoders is provided. The BMI has a decoder for decoding neural signals for controlling the brain machine interface. The decoder separates in part neural signals associated with a direction of movement and neural signals associated with a speed of movement of the brain machine interface. The decoder assigns relatively greater weight to the neural signals associated with a direction of movement.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Jonathan C. Kao, Chethan Pandarinath, Paul Nuyujukian, Krishna V. Shenoy
  • Patent number: 9373088
    Abstract: A brain machine interface for control of prosthetic devices is provided. In its control, the interface utilizes parallel control of a continuous decoder and a discrete action state decoder. In the discrete decoding, we not only learn states affiliated with the task, but also states related to the velocity of the prosthetic device and the engagement of the user. Moreover, we not only learn the distributions of the neural signals in these states, but we also learn the interactions/transitions between the states, which is crucial to enabling a relatively higher level of performance of the prosthetic device. Embodiments according to this parallel control system enable us to reliably decode not just task-related states, but any “discrete action state,” in parallel with a neural prosthetic “continuous decoder,” to achieve new state-of-the-art levels of performance in brain-machine interfaces.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: June 21, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Paul Nuyujukian, Jonathan C. Kao, Krishna V Shenoy
  • Publication number: 20150245928
    Abstract: A brain machine interface (BMI) for restoring performance of poorly performing decoders is provided. The BMI has a decoder for decoding neural signals for controlling the brain machine interface. The decoder separates in part neural signals associated with a direction of movement and neural signals associated with a speed of movement of the brain machine interface. The decoder assigns relatively greater weight to the neural signals associated with a direction of movement.
    Type: Application
    Filed: June 19, 2014
    Publication date: September 3, 2015
    Inventors: Jonathan C. Kao, Chethan Pandarinath, Paul Nuyujukian, Krishna V. Shenoy
  • Patent number: 9095455
    Abstract: A brain-machine interface is provided that incorporates a neural dynamical structure in the control of a prosthetic device to restore motor function and is able to significantly enhance the control performance compared to existing technologies. In one example, a neural dynamical state is inferred from neural observations, which are obtained from a neural implant. In another example, the neural dynamical state can be inferred from both the obtained neural observations and from the kinematics. A controller interfaced with the prosthetic device uses the inferred neural dynamical state as input to the controller to control kinematic variables of the prosthetic device.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 4, 2015
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Cambridge Enterprise Limited
    Inventors: Jonathan C. Kao, Paul Nuyujukian, Mark M. Churchland, John P. Cunningham, Krishna V. Shenoy
  • Publication number: 20140257520
    Abstract: A brain-machine interface is provided that incorporates a neural dynamical structure in the control of a prosthetic device to restore motor function and is able to significantly enhance the control performance compared to existing technologies. In one example, a neural dynamical state is inferred from neural observations, which are obtained from a neural implant. In another example, the neural dynamical state can be inferred from both the obtained neural observations and from the kinematics. A controller interfaced with the prosthetic device uses the inferred neural dynamical state as input to the controller to control kinematic variables of the prosthetic device.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 11, 2014
    Inventors: Jonathan C. Kao, Paul Nuyujukian, Mark M. Churchland, John P. Cunningham, Krishna V. Shenoy
  • Patent number: 8792976
    Abstract: Artificial control of a prosthetic device is provided. A brain machine interface contains a mapping of neural signals and corresponding intention estimating kinematics (e.g. positions and velocities) of a limb trajectory. The prosthetic device is controlled by the brain machine interface. During the control of the prosthetic device, a modified brain machine interface is developed by modifying the vectors of the velocities defined in the brain machine interface. The modified brain machine interface includes a new mapping of the neural signals and the intention estimating kinematics that can now be used to control the prosthetic device using recorded neural brain signals from a user of the prosthetic device. In one example, the intention estimating kinematics of the original and modified brain machine interface includes a Kalman filter modeling velocities as intentions and positions as feedback.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: July 29, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vikash Gilja, Paul Nuyujukian, Cynthia A Chestek, John P Cunningham, Byron M. Yu, Stephen I Ryu, Krishna V. Shenoy
  • Publication number: 20140081454
    Abstract: A brain machine interface for control of prosthetic devices is provided. In its control, the interface utilizes parallel control of a continuous decoder and a discrete action state decoder. In the discrete decoding, we not only learn states affiliated with the task, but also states related to the velocity of the prosthetic device and the engagement of the user. Moreover, we not only learn the distributions of the neural signals in these states, but we also learn the interactions/transitions between the states, which is crucial to enabling a relatively higher level of performance of the prosthetic device. Embodiments according to this parallel control system enable us to reliably decode not just task-related states, but any “discrete action state,” in parallel with a neural prosthetic “continuous decoder,” to achieve new state-of-the-art levels of performance in brain-machine interfaces.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 20, 2014
    Inventors: Paul Nuyujukian, Jonathan C. Kao, Krishna V. Shenoy
  • Publication number: 20110224572
    Abstract: Artificial control of a prosthetic device is provided. A brain machine interface contains a mapping of neural signals and corresponding intention estimating kinematics (e.g. positions and velocities) of a limb trajectory. The prosthetic device is controlled by the brain machine interface. During the control of the prosthetic device, a modified brain machine interface is developed by modifying the vectors of the velocities defined in the brain machine interface. The modified brain machine interface includes a new mapping of the neural signals and the intention estimating kinematics that can now be used to control the prosthetic device using recorded neural brain signals from a user of the prosthetic device. In one example, the intention estimating kinematics of the original and modified brain machine interface includes a Kalman filter modeling velocities as intentions and positions as feedback.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Inventors: Vikash Gilja, Paul Nuyujukian, Cynthia A. Chestek, John P. Cunningham, Byron M. Yu, Stephen I. Ryu, Krishna V. Shenoy