Patents by Inventor Paul Orecchio

Paul Orecchio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12005925
    Abstract: A teleoperations system that collaboratively works with an autonomous vehicle planning component to generate a path for controlling the autonomous vehicle to pass a situation where the vehicle is unable to identify a vehicle option to proceed and may comprise presenting one or more paths to a teleoperator (e.g., a human user, machine-learned model, and/or artificial intelligence component), such paths being generated either at the vehicle or remote system. The teleoperations system may receive input from the teleoperator indicating a vehicle option to select for the vehicle to proceed in the environment. The teleoperations system may generate a guidance path based on the vehicle options and the input and transmit the guidance path to the autonomous vehicle. Based at least in part on the guidance path, the autonomous vehicle may generate a control trajectory to use to navigate around the obstacle.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: June 11, 2024
    Assignee: Zoox, Inc.
    Inventors: Ravi Gogna, Arian Houshmand, Paul Orecchio
  • Patent number: 11927952
    Abstract: A vehicle can connect to multiple networks and can determine network parameters (e.g., available bandwidth, latency, signal strength, etc.) associated with the multiple networks. Additionally, the vehicle can access network map data associated with the multiple networks. As the vehicle traverses an environment, the vehicle can collect sensor data of the environment and/or vehicle data (e.g., vehicle pose, diagnostic data, etc.). Based on the network parameters and the network map data, the vehicle can optimize the use of the networks determine portions of the sensor data and/or vehicle data to transmit via the one or more of the multiple networks.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 12, 2024
    Assignee: Zoox, Inc.
    Inventors: Ravi Gogna, Paul Orecchio
  • Publication number: 20240036571
    Abstract: A remote operations system receives a request for remote operator assistance and adds the request to a queue of additional requests. The queue may be ordered based on time of receipt, priority, criticality, and the like. The remote operations system determines a remote operator of a set of remote operators to provide a response to the request in the queue based at least in part on one or more of a status of the remote operator (e.g., indicative of availability, whether they are in training, etc.), criteria associated with the remote operator (e.g., skills in responding to various requests, preferences for a geographic area, mission types, etc.), and information associated with the request received from the vehicle (e.g., mission type, sensor data, messages, vehicle status, etc.). If the request is not accepted in a threshold period of time, the request may be rerouted to an additional remote operator.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Inventors: Meredith James Goldman, Rachel Gelb, Ravi Gogna, Alexander Jacques Maria Mertens, Paul Orecchio
  • Patent number: 11809178
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: November 7, 2023
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20220260994
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 18, 2022
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11366471
    Abstract: A driverless vehicle may include a processor, a sensor, a network interface, and a memory having stored thereon processor-executable instructions. The driverless vehicle may be configured to obtain a stream of sensor signals including sensor data related to operation of the driverless vehicle from the sensor and/or the network interface. The driverless vehicle may be configured to determine a confidence level associated with operation of the driverless vehicle from the sensor data, and store the confidence level and at least a portion of the sensor data. The driverless vehicle may also be configured to transmit via the network interface a request for teleoperator assistance, and the request may include the portion of the sensor data and the confidence level.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: June 21, 2022
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11307576
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: April 19, 2022
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11275370
    Abstract: Techniques and methods for navigating an autonomous vehicle using teleoperator instructions. For instance, while navigating to a location, progress of an autonomous vehicle may stop. This may be caused by the autonomous vehicle yielding to another vehicle, such as at an intersection or when the other vehicle is located along a route of the autonomous vehicle. After yielding for a threshold amount of time, the autonomous vehicle may send sensor data and/or an indication of the other vehicle to the teleoperator. The autonomous vehicle may then receive, from the teleoperator, an instruction to cease yielding to the other vehicle. Based at least in part on the instruction, the autonomous vehicle may again begin navigating.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 15, 2022
    Assignee: Zoox, Inc.
    Inventors: Ravi Gogna, Meredith James Goldman, Paul Orecchio
  • Patent number: 11209822
    Abstract: Techniques and methods for contacting a teleoperator. For instance, while navigating to a location, progress of an autonomous vehicle may stop. This may be caused by the autonomous vehicle yielding to another vehicle, such as at an intersection or when the other vehicle is located along a route of the autonomous vehicle. While yielding to the other vehicle, the autonomous vehicle may determine that the progress has stopped for a threshold amount of time. Additionally, in some circumstances, the autonomous vehicle may determine that the progress not been stopped due to traffic or a traffic light. Based at least in part on the determinations, the autonomous vehicle may send sensor data to the teleoperator, where the sensor data represents an environment for which the autonomous vehicle is located. Additionally, the autonomous vehicle may send an indication of the other vehicle to the teleoperator.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 28, 2021
    Assignee: Zoox, Inc.
    Inventors: Ravi Gogna, Meredith James Goldman, Paul Orecchio
  • Publication number: 20210311471
    Abstract: A vehicle can connect to multiple networks and can determine network parameters (e.g., available bandwidth, latency, signal strength, etc.) associated with the multiple networks. Additionally, the vehicle can access network map data associated with the multiple networks. As the vehicle traverses an environment, the vehicle can collect sensor data of the environment and/or vehicle data (e.g., vehicle pose, diagnostic data, etc.). Based on the network parameters and the network map data, the vehicle can optimize the use of the networks determine portions of the sensor data and/or vehicle data to transmit via the one or more of the multiple networks.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Ravi Gogna, Paul Orecchio
  • Patent number: 11042153
    Abstract: A vehicle can connect to multiple networks and can determine network parameters (e.g., available bandwidth, latency, signal strength, etc.) associated with the multiple networks. Additionally, the vehicle can access network map data associated with the multiple networks. As the vehicle traverses an environment, the vehicle can collect sensor data of the environment and/or vehicle data (e.g., vehicle pose, diagnostic data, etc.). Based on the network parameters and the network map data, the vehicle can optimize the use of the networks determine portions of the sensor data and/or vehicle data to transmit via the one or more of the multiple networks.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 22, 2021
    Assignee: Zoox, Inc.
    Inventors: Ravi Gogna, Paul Orecchio
  • Patent number: 10976732
    Abstract: A teleoperator device may be configured to obtain a request for teleoperator assistance from a driverless vehicle and obtain teleoperator data in response to the request. The teleoperator device may also be configured to record at least some of the teleoperator input and/or guidance transmitted to the driverless vehicle based on the teleoperator input. Upon receiving a subsequent request, the teleoperator device may be configured to reproduce at least part of the former teleoperator input and/or to provide an option to activate guidance associated with the teleoperator input. The teleoperator device may also be configured to train a model and/or use a model to determine from vehicle data an option for presentation via a teleoperator interface and/or a presentation configuration of the teleoperator interface.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 13, 2021
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20200409363
    Abstract: Techniques and methods for contacting a teleoperator. For instance, while navigating to a location, progress of an autonomous vehicle may stop. This may be caused by the autonomous vehicle yielding to another vehicle, such as at an intersection or when the other vehicle is located along a route of the autonomous vehicle. While yielding to the other vehicle, the autonomous vehicle may determine that the progress has stopped for a threshold amount of time. Additionally, in some circumstances, the autonomous vehicle may determine that the progress not been stopped due to traffic or a traffic light. Based at least in part on the determinations, the autonomous vehicle may send sensor data to the teleoperator, where the sensor data represents an environment for which the autonomous vehicle is located. Additionally, the autonomous vehicle may send an indication of the other vehicle to the teleoperator.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Ravi Gogna, Meredith James Goldman, Paul Orecchio
  • Publication number: 20200409358
    Abstract: Techniques and methods for navigating an autonomous vehicle using teleoperator instructions. For instance, while navigating to a location, progress of an autonomous vehicle may stop. This may be caused by the autonomous vehicle yielding to another vehicle, such as at an intersection or when the other vehicle is located along a route of the autonomous vehicle. After yielding for a threshold amount of time, the autonomous vehicle may send sensor data and/or an indication of the other vehicle to the teleoperator. The autonomous vehicle may then receive, from the teleoperator, an instruction to cease yielding to the other vehicle. Based at least in part on the instruction, the autonomous vehicle may again begin navigating.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Ravi Gogna, Meredith James Goldman, Paul Orecchio
  • Publication number: 20200225659
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20200201315
    Abstract: A vehicle can connect to multiple networks and can determine network parameters (e.g., available bandwidth, latency, signal strength, etc.) associated with the multiple networks. Additionally, the vehicle can access network map data associated with the multiple networks. As the vehicle traverses an environment, the vehicle can collect sensor data of the environment and/or vehicle data (e.g., vehicle pose, diagnostic data, etc.). Based on the network parameters and the network map data, the vehicle can optimize the use of the networks determine portions of the sensor data and/or vehicle data to transmit via the one or more of the multiple networks.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Ravi Gogna, Paul Orecchio
  • Publication number: 20200183394
    Abstract: A driverless vehicle may include a processor, a sensor, a network interface, and a memory having stored thereon processor-executable instructions. The driverless vehicle may be configured to obtain a stream of sensor signals including sensor data related to operation of the driverless vehicle from the sensor and/or the network interface. The driverless vehicle may be configured to determine a confidence level associated with operation of the driverless vehicle from the sensor data, and store the confidence level and at least a portion of the sensor data. The driverless vehicle may also be configured to transmit via the network interface a request for teleoperator assistance, and the request may include the portion of the sensor data and the confidence level.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10606259
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 31, 2020
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10564638
    Abstract: A driverless vehicle may include a processor, a sensor, a network interface, and a memory having stored thereon processor-executable instructions. The driverless vehicle may be configured to obtain a stream of sensor signals including sensor data related to operation of the driverless vehicle from the sensor and/or the network interface. The driverless vehicle may be configured to determine a confidence level associated with operation of the driverless vehicle from the sensor data, and store the confidence level and at least a portion of the sensor data. The driverless vehicle may also be configured to transmit via the network interface a request for teleoperator assistance, and the request may include the portion of the sensor data and the confidence level.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: February 18, 2020
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10386836
    Abstract: A method for operating a driverless vehicle may include receiving, at the driverless vehicle, sensor signals related to operation of the driverless vehicle, and road network data from a road network data store. The method may also include determining a driving corridor within which the driverless vehicle travels according to a trajectory, and causing the driverless vehicle to traverse a road network autonomously according to a path from a first geographic location to a second geographic location. The method may also include determining that an event associated with the path has occurred, and sending communication signals to a teleoperations system including a request for guidance and one or more of sensor data and the road network data. The method may include receiving, at the driverless vehicle, teleoperations signals from the teleoperations system, such that the vehicle controller determines a revised trajectory based at least in part on the teleoperations signals.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: August 20, 2019
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson