Patents by Inventor Paul R. Hart

Paul R. Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11333650
    Abstract: This disclosure relates methods and systems for determining asphaltene inhibitor properties. For example, one embodiment provides a method for determining a content of disaggregated asphaltene in an inhibited crude oil. The method includes measuring the dielectric constant of a sample of the crude oil, the sample having a first concentration of an asphaltene inhibitor; providing a first dielectric correction factor for the first concentration of the asphaltene inhibitor; calculating, e.g., by a computing device, a first corrected dielectric constant of the sample having the first concentration, using the first dielectric correction factor; and determining the content of disaggregated asphaltene in the first crude oil sample, based on the first corrected dielectric constant. Methods for inhibiting asphaltene aggregation in crude oil are also provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 17, 2022
    Assignee: Clariant International Ltd.
    Inventors: Paul R Hart, Abhishek Punase, Rama Rao Alapati
  • Patent number: 11333651
    Abstract: This disclosure relates methods and systems for determining asphaltene inhibitor properties. For example, one embodiment provides a method for determining a content of disaggregated asphaltene in an inhibited crude oil. The method includes measuring the dielectric constant of a sample of the crude oil, the sample having a first concentration of an asphaltene inhibitor; providing a first dielectric correction factor for the first concentration of the asphaltene inhibitor; calculating, e.g., by a computing device, a first corrected dielectric constant of the sample having the first concentration, using the first dielectric correction factor; and determining the content of disaggregated asphaltene in the first crude oil sample, based on the first corrected dielectric constant. Methods for inhibiting asphaltene aggregation in crude oil are also provided.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 17, 2022
    Assignee: Clariant International Ltd.
    Inventors: Paul R Hart, Abhishek Punase, Rama Rao Alapati
  • Publication number: 20210080444
    Abstract: This disclosure relates methods and systems for determining asphaltene inhibitor properties. For example, one embodiment provides a method for determining a content of disaggregated asphaltene in an inhibited crude oil. The method includes measuring the dielectric constant of a sample of the crude oil, the sample having a first concentration of an asphaltene inhibitor; providing a first dielectric correction factor for the first concentration of the asphaltene inhibitor; calculating, e.g., by a computing device, a first corrected dielectric constant of the sample having the first concentration, using the first dielectric correction factor; and determining the content of disaggregated asphaltene in the first crude oil sample, based on the first corrected dielectric constant. Methods for inhibiting asphaltene aggregation in crude oil are also provided.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Applicant: Clariant International, Ltd.
    Inventors: Paul R. HART, Abhishek PUNASE, Rama Rao Alapati
  • Publication number: 20210080445
    Abstract: This disclosure relates methods and systems for determining asphaltene inhibitor properties. For example, one embodiment provides a method for determining a content of disaggregated asphaltene in an inhibited crude oil. The method includes measuring the dielectric constant of a sample of the crude oil, the sample having a first concentration of an asphaltene inhibitor; providing a first dielectric correction factor for the first concentration of the asphaltene inhibitor; calculating, e.g., by a computing device, a first corrected dielectric constant of the sample having the first concentration, using the first dielectric correction factor; and determining the content of disaggregated asphaltene in the first crude oil sample, based on the first corrected dielectric constant. Methods for inhibiting asphaltene aggregation in crude oil are also provided.
    Type: Application
    Filed: October 30, 2019
    Publication date: March 18, 2021
    Applicant: Clariant International, Ltd.
    Inventors: Paul R HART, Abhishek PUNASE, Rama Rao Alapati
  • Patent number: 10432148
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 1, 2019
    Assignee: NXP USA, Inc.
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E. Sweeney
  • Publication number: 20190181805
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E, Sweeney
  • Patent number: 10269729
    Abstract: A device (e.g., a Doherty amplifier) housed in an air cavity package includes one or more isolation structures over a surface of a substrate and defining an active circuit area. The device also includes first and second adjacent circuits within the active circuit area, first and second leads coupled to the isolation structure(s) between opposite sides of the package and electrically coupled to the first circuit, third and fourth leads coupled to the isolation structure(s) between the opposite sides of the package and electrically coupled to the second circuit, a first terminal over the first side of the package between the first lead and the third lead, a second terminal over the second side of the package between the second lead and the fourth lead, and an electronic component coupled to the package and electrically coupled to the first terminal, the second terminal, or both the first and second terminals.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: April 23, 2019
    Assignee: NXP USA, Inc.
    Inventors: Shun Meen Kuo, Paul R. Hart, Margaret A. Szymanowski
  • Patent number: 10211787
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 19, 2019
    Assignee: NXP USA, INC.
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E. Sweeney
  • Publication number: 20180375477
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: ABDULRHMAN M.S. AHMED, MARIO M. BOKATIUS, PAUL R. HART, JOSEPH STAUDINGER, RICHARD E. SWEENEY
  • Publication number: 20180269158
    Abstract: A device (e.g., a Doherty amplifier) housed in an air cavity package includes one or more isolation structures over a surface of a substrate and defining an active circuit area. The device also includes first and second adjacent circuits within the active circuit area, first and second leads coupled to the isolation structure(s) between opposite sides of the package and electrically coupled to the first circuit, third and fourth leads coupled to the isolation structure(s) between the opposite sides of the package and electrically coupled to the second circuit, a first terminal over the first side of the package between the first lead and the third lead, a second terminal over the second side of the package between the second lead and the fourth lead, and an electronic component coupled to the package and electrically coupled to the first terminal, the second terminal, or both the first and second terminals.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Shun Meen Kuo, Paul R. Hart, Margaret A. Szymanowski
  • Patent number: 10069463
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 4, 2018
    Assignee: NXP USA, INC.
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E. Sweeney
  • Patent number: 10027284
    Abstract: An embodiment of an amplifier system includes a modifiable signal adjustment device with an RF signal adjustment circuit coupled between first and second nodes. The RF signal adjustment circuit includes an adjustable phase shifter and an adjustable attenuator coupled in series with each other. The device also includes a memory and a controller circuit. The controller circuit retrieves a phase shift value and an attenuation value from the memory. The controller circuit then controls the adjustable phase shifter to apply a phase shift corresponding to the phase shift value to an input RF signal received at the first node, and controls the adjustable attenuator to apply an attenuation corresponding to the attenuation value to the input RF signal. Applying the phase shift and the attenuation results in an output RF signal at the second node.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 17, 2018
    Assignee: NXP USA, INC.
    Inventors: Joseph Staudinger, Abdulrhman M. S. Ahmed, Paul R. Hart, Monte G. Miller, Nicholas J. Spence
  • Publication number: 20180159480
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 7, 2018
    Inventors: ABDULRHMAN M.S. AHMED, MARIO M. BOKATIUS, PAUL R. HART, JOSEPH STAUDINGER, RICHARD E. SWEENEY
  • Patent number: 9979355
    Abstract: An embodiment of an amplifier system includes a modifiable signal adjustment device with an RF signal adjustment circuit coupled between first and second nodes. The RF signal adjustment circuit includes an adjustable phase shifter and an adjustable attenuator coupled in series with each other. The device also includes a memory and a controller circuit. The controller circuit retrieves a phase shift value and an attenuation value from the memory. The controller circuit then controls the adjustable phase shifter to apply a phase shift corresponding to the phase shift value to an input RF signal received at the first node, and controls the adjustable attenuator to apply an attenuation corresponding to the attenuation value to the input RF signal. Applying the phase shift and the attenuation results in an output RF signal at the second node.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 22, 2018
    Assignee: NXP USA, INC.
    Inventors: Joseph Staudinger, Abdulrhman M. S. Ahmed, Paul R. Hart, Monte G. Miller, Nicholas J. Spence
  • Patent number: 9978691
    Abstract: A device (e.g., a Doherty amplifier) housed in an air cavity package includes one or more isolation structures over a surface of a substrate and defining an active circuit area. The device also includes first and second adjacent circuits within the active circuit area, first and second leads coupled to the isolation structure(s) between opposite sides of the package and electrically coupled to the first circuit, third and fourth leads coupled to the isolation structure(s) between the opposite sides of the package and electrically coupled to the second circuit, a first terminal over the first side of the package between the first lead and the third lead, a second terminal over the second side of the package between the second lead and the fourth lead, and an electronic component coupled to the package and electrically coupled to the first terminal, the second terminal, or both the first and second terminals.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: May 22, 2018
    Assignee: NXP USA, INC.
    Inventors: Shun Meen Kuo, Paul R. Hart, Margaret A. Szymanowski
  • Patent number: 9876475
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 23, 2018
    Assignee: NXP USA, INC.
    Inventors: Abdulrhman M. S. Ahmed, Mario M. Bokatius, Paul R. Hart, Joseph Staudinger, Richard E. Sweeney
  • Patent number: 9774299
    Abstract: An embodiment of an amplifier system includes a modifiable signal adjustment device with an RF signal adjustment circuit coupled between first and second nodes. The RF signal adjustment circuit includes an adjustable phase shifter and an adjustable attenuator coupled in series with each other. The device also includes a memory and a controller circuit. The controller circuit retrieves a phase shift value and an attenuation value from the memory. The controller circuit then controls the adjustable phase shifter to apply a phase shift corresponding to the phase shift value to an input RF signal received at the first node, and controls the adjustable attenuator to apply an attenuation corresponding to the attenuation value to the input RF signal. Applying the phase shift and the attenuation results in an output RF signal at the second node.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: September 26, 2017
    Assignee: NXP USA, INC.
    Inventors: Joseph Staudinger, Abdulrhman M. S. Ahmed, Paul R. Hart, Monte G. Miller, Nicholas J. Spence
  • Publication number: 20170111014
    Abstract: An embodiment of an amplifier system includes a modifiable signal adjustment device with an RF signal adjustment circuit coupled between first and second nodes. The RF signal adjustment circuit includes an adjustable phase shifter and an adjustable attenuator coupled in series with each other. The device also includes a memory and a controller circuit. The controller circuit retrieves a phase shift value and an attenuation value from the memory. The controller circuit then controls the adjustable phase shifter to apply a phase shift corresponding to the phase shift value to an input RF signal received at the first node, and controls the adjustable attenuator to apply an attenuation corresponding to the attenuation value to the input RF signal. Applying the phase shift and the attenuation results in an output RF signal at the second node.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Inventors: Joseph Staudinger, Abdulrhman M. S. Ahmed, Paul R. Hart, Monte G. Miller, Nicholas J. Spence
  • Publication number: 20170077874
    Abstract: Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 16, 2017
    Inventors: ABDULRHMAN M.S. AHMED, MARIO M. BOKATIUS, PAUL R. HART, JOSEPH STAUDINGER, RICHARD E. SWEENEY
  • Patent number: 9574429
    Abstract: Air and ammonia gas are introduced into a subterranean formation during the in-situ combustion to increase the mobility of hydrocarbons in a subterranean formation and facilitate recovery of the hydrocarbons from the subterranean formation. The air supports in-situ combustion of a portion of the hydrocarbon within the subterranean formation to form water and establish a combustion front. The ammonia gas contacts the hydrocarbons ahead of the combustion front and reacts in-situ with naphthenic acid in the hydrocarbon to form a surfactant. The hydrocarbons, water and surfactant then form an oil-in-water emulsion that drains more freely through the formation. A production well, in fluid communication with the hydrocarbons ahead of the combustion front, may be used to remove the oil-in-water emulsion from the subterranean formation.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 21, 2017
    Assignee: Nalco Company
    Inventor: Paul R. Hart