Patents by Inventor Paul R. Ohodnicki

Paul R. Ohodnicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10654747
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 19, 2020
    Assignee: Vitro Flat Glass LLC
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy, Benjamin Lucci
  • Patent number: 10654748
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: May 19, 2020
    Assignee: Vitro Flat Glass LLC
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy
  • Publication number: 20200029396
    Abstract: A method of thermally processing a material with a thermal processing system includes providing a material for treating in an in-line thermal process to a heating system, providing a force to the material at a portion of the material configured to be heated by the heating system, adjusting the heating system to a specified temperature value, and heating the portion of the material to the specified temperature value while the portion of the material is under the force to change a magnetic property in the portion of the material. The heating system is moveable from a first position that is away from a path of the material through the in-line thermal process to a second position in which the heating system is configured to heat the portion of the material to the specified temperature value. The heating system can include induction-based heating.
    Type: Application
    Filed: June 12, 2019
    Publication date: January 23, 2020
    Inventors: Michael E. McHenry, Kevin Byerly, Paul R. Ohodnicki, Yuval Krimer, Satoru Simizu, Alex M. Leary
  • Publication number: 20200017409
    Abstract: An optical sensor device includes an optical waveguide portion having a core, the core having a first refractive index, and a functional material layer coupled to the optical fiber portion, the functional material layer being made of a metal oxide material, the functional material layer being structured to have a second refractive index, the second refractive index being less than the first refractive index. The functional material layer may be a nanostructure material comprising the metal oxide material with a plurality of holes or voids formed therein such that the functional material layer is caused to have the second refractive index.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, U.S. DEPARTMENT OF ENERGY
    Inventors: PENG CHEN, JACOB LORENZI POOLE, PAUL R. OHODNICKI, MICHAEL PAUL BURIC
  • Patent number: 10457596
    Abstract: An optical sensor device includes an optical waveguide portion having a core, the core having a first refractive index, and a functional material layer coupled to the optical fiber portion, the functional material layer being made of a metal oxide material, the functional material layer being structured to have a second refractive index, the second refractive index being less than the first refractive index. The functional material layer may be a nanostructure material comprising the metal oxide material with a plurality of holes or voids formed therein such that the functional material layer is caused to have the second refractive index.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: October 29, 2019
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Peng Chen, Jacob Lorenzi Poole, Paul R. Ohodnicki, Michael Paul Buric
  • Publication number: 20190317130
    Abstract: A system and method for forming a low cost optical sensor array. The sensor includes an optical fiber; a first nanocomposite thin film along at least a portion of the optical fiber for interrogating a first parameter through a correlated signal having a first wavelength; and a second nanocomposite thin film along at least a portion of the optical fiber for interrogating a second parameter through a correlated signal having a second wavelength different from the wavelength of the first parameter.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 17, 2019
    Inventors: Chenhu Sun, Ping Lu, Ruishu Feng, Paul R. Ohodnicki
  • Publication number: 20190276353
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 12, 2019
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel, Dennis J. O'Shaughnessy
  • Publication number: 20190276352
    Abstract: An architectural transparency includes a substrate; a first dielectric layer over at least a portion of the substrate, a first metallic layer over the first dielectric layer, a first primer layer over the first metallic layer, a second dielectric layer over the first primer layer, a second metallic layer over the second dielectric layer, a second primer layer over the second metallic layer, a third dielectric layer over the second primer layer, a third metallic layer over the third dielectric layer, a third primer layer over the third dielectric layer, and a fourth dielectric layer over the third primer layer. At least one of the metallic layers is a subcritical metallic layer.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Harry Buhay, Abhinav Bhandari, James J. Finley, Paul R. Ohodnicki, JR.
  • Patent number: 10358384
    Abstract: An architectural transparency includes a substrate, a first dielectric layer formed over at least a portion of the substrate, a subcritical metallic layer formed over at least a portion of the first dielectric layer, a primer layer formed over the subcritical metallic layer and, a second dielectric layer formed over at least a portion of the primer layer. The primer layer contains an oxygen-capturing material that can be sacrificed during a deposition process or heating process to prevent degradation of the subcritical metallic layer.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: July 23, 2019
    Assignee: Vitro, S.A.B. de C.V.
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Harry Buhay, Abhinav Bhandari, James J. Finley, Paul R. Ohodnicki, Dennis J. O'Shaughnessy, Jeffrey A. Benigni, Paul A. Medwick, James P. Thiel
  • Patent number: 10345279
    Abstract: The disclosure relates to a method for H2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10?7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Additional exemplary matrix materials consist of zeolitic and zeolite-derivative structures which are microporous and/or nanoporous such as the alumino-silicates and the dealuminated zeolite NaA structures.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: July 9, 2019
    Assignee: U.S. Department of Energy
    Inventors: Paul R Ohodnicki, Jr., Chenhu Sun, John P Baltrus, Thomas D Brown
  • Publication number: 20190178845
    Abstract: One or more embodiments relates a single port surface acoustic wave sensor (SAW) device adapted for use in a wide range of operational temperatures and gas phase chemical species. The device includes a piezoelectric crystal substrate; at least one interdigitated electrode/transducer (IDT) positioned on the piezoelectric crystal substrate; and at least one conducting metal oxide film positioned on the piezoelectric crystal substrate and in communication with at least the IDT.
    Type: Application
    Filed: November 28, 2018
    Publication date: June 13, 2019
    Inventors: Paul R. Ohodnicki, JR., Robert Fryer, Jagannath Devkota
  • Publication number: 20190154765
    Abstract: A method includes producing an amorphous precursor to a nanocomposite, the amorphous precursor comprising a material that is substantially without crystals not exceeding 20% volume fraction; performing devitrification of the amorphous precursor, wherein the devitrification comprises a process of crystallization; forming, based on the devitrification, the nanocomposite with nano-crystals that contains an induced magnetic anisotropy; tuning, based on one or more of composition, temperature, configuration, and magnitude of stress applied during annealing and modification, the magnetic anisotropy of the nanocomposite; and adjusting, based on the tuned magnetic anisotropy, a magnetic permeability of the nanocomposite.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 23, 2019
    Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, Vladimir Keylin, Joseph Huth, Samuel J. Kernion
  • Patent number: 10274421
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, redox-active molecules, a metal, or any combinations thereof. In some exemplary embodiments, optical properties of the plasmonic nanomaterials and/or the redox-active molecules combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the material or as a result of charge transfer to and from the plasmonic nanomaterial and/or the redox-active molecule as a result of interactions with the MOF material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: April 30, 2019
    Assignees: Oregon State University, U.S. Department of Energy
    Inventors: Chih-hung Chang, Ki-Joong Kim, Alan X. Wang, Yujing Zhang, Xinyuan Chong, Paul R. Ohodnicki
  • Patent number: 10274431
    Abstract: A method for evaluating the pH of an aqueous solution by utilizing the optical properties of a pH sensing material includes optically active nanoparticles fixed to a substrate. The optically active nanoparticles have a localized refractive index modulation over a pH range from 2.0 to 12.0 of at least 1% and, where the plurality of optically active nanoparticles have an average nanoparticle diameter of less than about 500 nanometers. The method includes contacting the pH sensing material with the aqueous solution, illuminating the pH sensing material, and monitoring an optical signal generated through comparison of incident light and exiting light to determine the optical transmission, absorption, reflection, and/or scattering of the pH sensitive material. The optical signal of the pH sensitive material varies in response to the pH of the aqueous solution, providing a means by which the pH and any changes in the pH may be analyzed.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 30, 2019
    Assignee: U.S. Department of Energy
    Inventors: Douglas Kauffman, Christopher Matranga, Paul R. Ohodnicki, Jr., Xin Su, Congjun Wang
  • Publication number: 20190115199
    Abstract: The disclosure relates to an apparatus, method and process for detecting rare earth elements. The system includes an LED powered by a first power source and a focusing lens in optical communication with the LED. A shortpass filter is in optical communication with the focusing lens; and a fiber bifurcated cable in optical communication with the shortpass filter. The system includes a probe tip in optical communication with the fiber bifurcated cable and a sample; a first aspheric lens in optical communication with the fiber bifurcated cable. A longpass filter is in optical communication with the first aspheric lens and a second aspheric lens in optical communication with the longpass filter. The system includes a spectrometer connected to a power source, where the spectrometer is in optical communication with the second aspheric lens.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 18, 2019
    Inventors: John C. Ahern, Paul R. Ohodnicki, JR., John P. Baltrus, Zsolt Poole
  • Publication number: 20190064432
    Abstract: A method of making an optical fiber sensor device for distributed sensing includes generating a laser beam comprising a plurality of ultrafast pulses, and focusing the laser beam into a core of an optical fiber to form a nanograting structure within the core, wherein the nanograting structure includes a plurality of spaced nanograting elements each extending substantially parallel to a longitudinal axis of optical fiber. Also, an optical fiber sensor device for distributed sensing includes an optical fiber having a longitudinal axis, a core, and a nanograting structure within the core, wherein the nanograting structure includes a plurality of spaced nanograting elements each extending substantially parallel to the longitudinal axis of the optical fiber. Also, a distributed sensing method and system and an energy production system that employs such an optical fiber sensor device.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: PENG KEVIN CHEN, AIDONG YAN, MICHAEL P. BURIC, PAUL R. OHODNICKI, SHENG HUANG
  • Patent number: 10168392
    Abstract: A method includes producing an amorphous precursor to a nanocomposite, the amorphous precursor comprising a material that is substantially without crystals not exceeding 20% volume fraction; performing devitrification of the amorphous precursor, wherein the devitrification comprises a process of crystallization; forming, based on the devitrification, the nanocomposite with nano-crystals that contains an induced magnetic anisotropy; tuning, based on one or more of composition, temperature, configuration, and magnitude of stress applied during annealing and modification, the magnetic anisotropy of the nanocomposite; and adjusting, based on the tuned magnetic anisotropy, a magnetic permeability of the nanocomposite.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 1, 2019
    Assignees: Carnegie Mellon University, SPANG, INC., U.S. Department of Energy
    Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, Vladimir Keylin, Joseph Huth, Samuel J. Kernion
  • Publication number: 20180148371
    Abstract: An architectural transparency includes a substrate, a first dielectric layer formed over at least a portion of the substrate, a subcritical metallic layer formed over at least a portion of the first dielectric layer, a primer layer formed over the subcritical metallic layer and, a second dielectric layer formed over at least a portion of the primer layer. The primer layer contains an oxygen-capturing material that can be sacrificed during a deposition process or heating process to prevent degradation of the subcritical metallic layer.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 31, 2018
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Harry Buhay, Abhinav Bhandari, James J. Finley, Paul R. Ohodnicki, Dennis J. O'Shaughnessy, Jeffrey A. Benigni, Paul A. Medwick, James P. Thiel
  • Patent number: 9983124
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: May 29, 2018
    Assignees: Oregon State University, U.S. Department of Energy
    Inventors: Alan X. Wang, Chih-hung Chang, Ki-Joong Kim, Xinyuan Chong, Paul R. Ohodnicki
  • Publication number: 20180141859
    Abstract: An optical sensor device includes an optical waveguide portion having a core, the core having a first refractive index, and a functional material layer coupled to the optical fiber portion, the functional material layer being made of a metal oxide material, the functional material layer being structured to have a second refractive index, the second refractive index being less than the first refractive index. The functional material layer may be a nanostructure material comprising the metal oxide material with a plurality of holes or voids formed therein such that the functional material layer is caused to have the second refractive index.
    Type: Application
    Filed: January 17, 2018
    Publication date: May 24, 2018
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, U.S. DEPARTMENT OF ENERGY
    Inventors: Peng Chen, Jacob Lorenzi Poole, Paul R. Ohodnicki, Michael Paul Buric