Patents by Inventor Paul R. Zarriello

Paul R. Zarriello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7554294
    Abstract: A battery health monitor (BHM) that operates as a battery-mountable full-spectrum alternating current (ac) impedance meter that facilitates monitoring a state-of-charge and a state-of-health of a battery. The BHM is used for monitoring one or more electrical parameters, e.g., impedance, of a battery. The BHM includes: a current sink coupled to the first terminal and configured to sink therefrom an oscillatory current so as to cause the battery to produce at a first terminal thereof an oscillatory voltage equal to or less than a dc operating voltage of the battery that would be present at the first terminal in the absence of the oscillatory current; and a voltage sensor configured to sense the oscillatory voltage at the first terminal.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 30, 2009
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Terry E. Phillips, Paul R. Zarriello, Bliss G. Carkhuff, Subhas Chalasani
  • Patent number: 6582587
    Abstract: Numerical techniques such as the finite element method (FEM) are used to model the current and voltage distribution in concrete structures such as bridges. The geometric arrangement of groundbeds and the ideal locations for the electrical contacts vis-a-vis the geometry of the bridge and the rebars can thereby be predicted and a cathodic protection (CP) system for the bridge designed. A magnetic sensor is used to sense the magnetic field generated by the CP current, and a voltmeter or an oscilloscope to measure the output of the magnetic sensor. A current interrupter is also used to interrupt the CP current at the source. The current is mapped by placing the magnetic sensor on or above the concrete surface. By moving the sensor from one location to another, the current is mapped over the entire structure. To achieve uniform distribution over the entire structure, an “expert” CP system controlled by a variety of current and environmental sensors and a dedicated microprocessor is described.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: June 24, 2003
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Periya Gopalan, Paul R. Zarriello
  • Patent number: 6411095
    Abstract: The invention is directed to an apparatus and method for locating objects in a body through the mapping and imaging of the conductivity profiles of such objects by applying a force to the object and/or body and measuring certain characteristics of the body responsive to the application of force. In accordance with a preferred embodiment, the force applied to the object and body is in the form of an electrical voltage or current such that electrical potentials, currents, and magnetic fields are generated throughout the subsurface site. The voltage, current, or magnetic field is then measured at the surface or the boundary of the body. An estimate of subsurface conductivity is then made and a conductivity profile generated by minimizing a loss function. Preferably, the loss function is in the form of the sum square of the differences between measurement values and a set of computed values based on a gradient approximation technique.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: June 25, 2002
    Assignee: The Johns Hopkins University
    Inventors: Daniel C. Chin, Rengaswamy Srinivasan, Paul R. Zarriello
  • Patent number: 5286355
    Abstract: The invention is a process for making sharp tips. A computer controlled instrument and process characterizes the tip while in formation and reliably produces tips having a radius of curvature of approximately 100 nm. In the invention, the position of the wire during the etching operation is mechanically controlled while the etching current is monitored. When the current reaches a predetermined level, the process is halted.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: February 15, 1994
    Assignee: The Johns Hopkins University
    Inventors: Raul Fainchtein, Paul R. Zarriello