Patents by Inventor Paul T. Barger

Paul T. Barger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5510559
    Abstract: An improved process is disclosed for the conversion of hydrocarbons, using a catalyst comprising a non-zeolitic molecular sieve which has been activity-moderated by controlled carbon deposition. It is of particular interest in skeletal isomerization to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Controlled carbon deposition increases selectivity to the desired olefin isomers. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: May 17, 1994
    Date of Patent: April 23, 1996
    Assignee: UOP
    Inventors: Paul T. Barger, Dorothy M. Richmond, Patrick T. Darby, II, R. Joe Lawson
  • Patent number: 5504258
    Abstract: A process for the efficient production of diisopropyl ether where catalytic distillation is used to increase the yield of product beyond thermodynamic equilibrium limitations has been developed. In a hydration zone the propylene in a feedstock is reacted with water in the presence of a catalyst to effect hydration to produce an effluent stream containing at least water, unreacted propylene, and isopropyl alcohol, and then, in an etherification zone, at least a portion of the effluent stream is further reacted by catalytic distillation in the presence of a catalyst to effect reaction of propylene and isopropyl alcohol to form diisopropyl ether while concurrently separating a propylene rich portion, a diisopropyl ether rich portion and an aqueous portion, and recovering the diisopropyl ether from the diisopropyl ether rich portion.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: April 2, 1996
    Assignee: UOP
    Inventors: Terry L. Marker, Gregory A. Funk, Paul T. Barger, Harold U. Hammershaimb
  • Patent number: 5463161
    Abstract: An improved process is disclosed for the isomerization of hindered olefins using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to reduce alkyl substituents in the olefins with low formation of undesirable by-products.
    Type: Grant
    Filed: September 17, 1993
    Date of Patent: October 31, 1995
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger
  • Patent number: 5414183
    Abstract: An improved process is disclosed for the removal of nitrogen compounds from light hydrocarbon streams. Such nitrogen removal enhances the performance of catalytic processes which upgrade light hydrocarbons, especially light olefins, such as isomerization and etherification. The nitrogen-removal process can usefully be combined with steps for removal of sulfur compounds and highly unsaturated compounds in a process combination for upgrading the light hydrocarbons.
    Type: Grant
    Filed: December 24, 1992
    Date of Patent: May 9, 1995
    Assignee: UOP
    Inventors: Hayim Abrevaya, Suleyman M. Ozmen, Paul T. Barger, Christopher D. Gosling, Thomas A. Verachtert
  • Patent number: 5367101
    Abstract: An improved process is disclosed for the isomerization of pentenes in the absence of hydrogen using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain methyl t-amyl ether, which enjoy high current interest as components for reformulated gasoline. Pentenes in raffinate from etherification may be returned to the isomerization process.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: November 22, 1994
    Assignee: UOP
    Inventors: Randy J. Lawson, Dorothy M. Richmond, Gregory J. Gajda, Paul T. Barger
  • Patent number: 5365008
    Abstract: An improved process is disclosed for the isomerization of butenes and/or pentenes using a catalyst comprising a silicoaluminophosphate molecular sieve containing noncondensed silica. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: November 15, 1994
    Assignee: UOP
    Inventors: Paul T. Barger, R. Lyle Patton, David A. Lesch, Lorenz J. Bauer, Gregory J. Gajda
  • Patent number: 5336831
    Abstract: An improved process is disclosed for the isomerization of butenes and/or pentenes using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: August 2, 1994
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger, Hayim Abrevaya
  • Patent number: 5292984
    Abstract: An improved process is disclosed for the isomerization of pentenes using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain methyl t-amyl ether, which enjoy high current interest as components for reformulated gasoline. Pentenes in raffinate from etherification may be returned to the isomerization process.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: March 8, 1994
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger
  • Patent number: 5248647
    Abstract: Hydrothermal treatment of silicoaluminophosphate molecular sieves at temperatures in excess of about 700.degree. C. for periods sufficient to destroy a large proportion of their acid sites while retaining at least 80 percent of their crystallinity is found to result in a catalyst for converting methanol to lower olefins having increased catalyst life, increased selectivity for C.sub.2 -C.sub.3 olefins and decreased selectivity for paraffin production than the untreated SAPO-n starting composition.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: September 28, 1993
    Assignee: UOP
    Inventor: Paul T. Barger
  • Patent number: 5233117
    Abstract: Hydrothermal treatment of silicoaluminophosphate molecular-sieves at temperatures in excess of about 700.degree. C. for periods sufficient to destroy a large proportion of their acid sites while retaining at least 80 percent of their crystallinity is found to result in a catalyst for converting methanol to lower olefins having increased catalyst life, increased selectivity for C.sub.2 -C.sub.3 olefins and decreased selectivity for paraffin production than the untreated SAPO-n starting composition.
    Type: Grant
    Filed: May 4, 1992
    Date of Patent: August 3, 1993
    Assignee: UOP
    Inventor: Paul T. Barger
  • Patent number: 5191141
    Abstract: This invention relates to an improved process for converting methanol to light olefins using an ELAPO catalyst. The catalyst comprises a metal aluminophosphate molecular sieve having the empirical formula (EL.sub.x Al.sub.y P.sub.z)O.sub.2 where EL is a metal and x,y and z are mole fractions of EL, Al and P respectively. Preferred metals are silicon, magnesium and cobalt, with silicon especially preferred. The molecular sieve catalyst is composed of particles at least 50% of which have a particle size less than 1.0 .mu.m and no more than 10% of the particles have a particle size greater than 2.0 .mu.m. It is also preferred that the metal content (x) be from about 0.005 and 0.05 mole fraction.
    Type: Grant
    Filed: April 1, 1992
    Date of Patent: March 2, 1993
    Assignee: UOP
    Inventors: Paul T. Barger, Stephen T. Wilson, Jennifer S. Holmgren
  • Patent number: 5191146
    Abstract: An improved process is disclosed for the isomerization of butenes, pentenes, and heavier olefins using a catalyst comprising a non-zeolitic molecular sieve. It is of particular interest to increase the proportion of olefins containing tertiary carbons in the product with low formation of undesirable by-products. Product olefins may be further processed to obtain ethers, which enjoy high current interest as components for reformulated gasoline.
    Type: Grant
    Filed: December 30, 1991
    Date of Patent: March 2, 1993
    Assignee: UOP
    Inventors: Gregory J. Gajda, Paul T. Barger
  • Patent number: 5157181
    Abstract: Moving bed hydrocarbon conversion processes are disclosed wherein a carbonaceous material is deposited on a solid catalyst used in the conversion process to form a coked catalyst which is regenerated in a regeneration zone in order to remove the carbonaceous deposit material from the catalyst and provide a regenerated catalyst having an increased number of active catalyst sites relative to the coked catalyst. The regenerated catalyst is then added to the reaction zone at a rate effective to enhance the conversion to desired products without enhancing the conversion to undesired by-products. When a radial flow reaction zone is employed a relatively constant amount of active catalyst sites can be maintained through the reaction zone by increasing the thickness of annulus through which the catalyst flows in the lower section of the reaction zone wherein the catalyst is more severely coked and has fewer active catalyst sites.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: October 20, 1992
    Assignee: UOP
    Inventors: Laurence O. Stine, Howard E. Fullerton, Thomas R. Fritsch, Paul T. Barger
  • Patent number: 5126308
    Abstract: This invention relates to an improved process for converting methanol to light olefins and to a catalyst for carrying out the process. The catalyst comprises a metal aluminophosphate molecular sieve having the empirical formula (EL.sub.x Al.sub.y P.sub.z)O.sub.2 where EL is a metal and x, y and z are mole fractions of EL, Al and P respectively. Preferred metals are silicon, magnesium and cobalt, with silicon especially preferred. The molecular sieve catalyst is composed of particles at least 50% of which have a particle size less than 1.0 .mu.m and no more than 10% of the particles have a particle size greater than 2.0 .mu.m. It is also preferred that the metal content (x) be from about 0.005 and 0.05 mole fraction.
    Type: Grant
    Filed: November 13, 1991
    Date of Patent: June 30, 1992
    Assignee: UOP
    Inventors: Paul T. Barger, Stephen T. Wilson, Jennifer S. Holmgren
  • Patent number: 5095163
    Abstract: Hydrothermal treatment of silicoaluminophosphate molecular sieves at temperatures in excess of about 700.degree. C. for periods sufficient to destroy a large proportion of their acid sites while retaining at least 80 percent of their crystallinity is found to result in a catalyst for converting methanol to lower olefins having increased catalyst life, increased selectivity for C.sub.2 -C.sub.3 olefins and decreased selectivity for paraffin production than the untreated SAPO-n starting composition.
    Type: Grant
    Filed: February 28, 1991
    Date of Patent: March 10, 1992
    Assignee: UOP
    Inventor: Paul T. Barger
  • Patent number: 5043509
    Abstract: Catalyst particles which are employed in reactions involving the conversion of organic compounds should possess a desired configuration in order to maintain a desired voidage which will permit passage of the feedstock through the catalyst bed during the conversion reaction. Solid phosphoric acid catalysts which comprise an admixture of an acid of phosphorus and a solid binder such as a siliceous material may be formed into polylobular, tubular, ridged, fluted, or channeled cylindrical particles which will permit a sufficient amount of voidage in the catalyst bed to be maintained even though the catalyst particles will swell during the reaction due to the formation of coke on the surface thereof.
    Type: Grant
    Filed: August 18, 1989
    Date of Patent: August 27, 1991
    Assignee: UOP
    Inventors: Tamotsu Imai, Paul T. Barger, Harold U. Hammershaimb
  • Patent number: 5004853
    Abstract: A continuous process is presented for the production and recovery of a high purity stream of 2,6-dimethylnaphthalene. The process comprises the general steps of: fractionating a hydrocarbon feed stream to recover a process stream rich in the various isomers of dimethylnaphthalene; subjecting the process stream rich in isomers of dimethylnaphthalene to a selective adsorption step to produce at least two streams of dimethylnaphthalene isomers, one lean in the 2,6-dimethylnaphthalene isomer and subjecting the stream of dimethylnaphthalene isomers lean in the 2,6 isomer to isomerization to increase the concentration of the 2,6 isomer of dimethylnaphthalene therein and directing the isomerized stream back to the fractionation zone to further processing.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: April 2, 1991
    Assignee: UOP
    Inventors: Paul T. Barger, Timothy J. Barder, David Y. Lin, Simon H. Hobbs
  • Patent number: 4870222
    Abstract: A process for the production of a monoalkylated aromatic compound which minimizes the production of undesirable alkylating agent oligomers, while producing monoalkylaromatics in high yields. The process entails the combination of an alkylation reaction zone, a separations zone, and a transalkylation reaction zone wherein the alkylation catalyst and transalkylation catalyst are dissimilar and where the alkylation catalyst is comprised of noncrystaline silica-alumina material and the transalkylation catalyst is comprised of an acid-modified crystalline aluminosilicate material that is characterized as having a surface area of at least 580 m.sup.2 /g following acid washing after catalyst particle formulation.
    Type: Grant
    Filed: November 2, 1988
    Date of Patent: September 26, 1989
    Assignee: UOP
    Inventors: Steve T. Bakas, Paul T. Barger
  • Patent number: 4861935
    Abstract: Superior aromatic alkylation and transalkylation performance is obtained with a novel catalytic composition comprising a hydrogen form mordenite incorporated with alumina. The superior performance is a direct result of the catalyst composition having a surface area of at least 580 m.sup.2 /g. A novel method of preparing a catalyst having a surface area of at least 580 m.sup.2 /g is characterized by contacting a formed catalytic composite with an acidic aqueous solution.
    Type: Grant
    Filed: November 3, 1988
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: Steve T. Bakas, Paul T. Barger
  • Patent number: 4857666
    Abstract: An alkylation-transalkylation process for the production of a monoalkylated aromatic compound is disclosed which maximizes the production of desirable monoalkylaromatic compounds, while limiting transalkylation catalyst deactivation. The process entails the combination of an alkylation reaction zone, a first seperation zone, a second separation zone, and a transalkylation reaction zone wherein the alkylation catalyst and transalkylation catalyst are dissimilar and where the alkylation catalyst is comprised of phosphoric acid material and the transalkylation catalyst is comprised of a crystalline aluminosilicate material. The transalkylation catalyst deactivation is reduced by transalkylating only dialkylated aromatic compounds. Additionally, the transalkylation catalyst is regenerable utilizing a hot liquid hydrocarbon wash.
    Type: Grant
    Filed: September 21, 1988
    Date of Patent: August 15, 1989
    Assignee: UOP
    Inventors: Paul T. Barger, Gregory J. Thompson, Raymond R. Herber, Tamotsu Imai