Patents by Inventor Paul T Charles

Paul T Charles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920035
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: March 5, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11618821
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 4, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20230054994
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 23, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11028265
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20210070998
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 11, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20190185670
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 20, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20140273062
    Abstract: Described herein is a sealed cell pack with a permeable membrane for growth and manipulation of three-dimensional cell cultures. This allows a cell culture to be removed from the laboratory and subjected to real world insults before being returned to culture conditions for continued growth and study. One application is for use in the study of the direct effects of blast waves on neuronal cells and methods for mitigating this response.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas O'Shaughnessy, Paul T. Charles, Kirth Simmonds, Amit Bagchi, Ryan Mcculloch
  • Patent number: 7785769
    Abstract: The use of sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. Unusually large sizes of interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. Sugar-containing hydrogels have extremely low non-specific absorption of labeled target molecules, providing low background levels. Some hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. Additionally, they nearly always experience non-specific absorption of labeled target molecules, limiting their usefulness in sensor applications. A method is provided for preparing sugar polyacrylate hydrogels with functional chemical groups which covalently bond oligonucleotides and peptides.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: August 31, 2010
    Assignee: The United States of America as reprsented by the Secretary of the Navy
    Inventors: Mark S. Spector, David A. Stenger, Charles H. Patterson, Jr., Brett D. Martin, Paul T. Charles
  • Patent number: 7785770
    Abstract: The use of sugar-containing hydrogels as very highly porous, aqueous support material for the immobilization of oligonucleotides, peptides, proteins, antigens, antibodies, polysaccharides, and other biomolecules for sensor applications. Unusually large sizes of interconnected pores allow large target molecules to pass rapidly into and through the gel and bind to immobilized biomolecules. Sugar-containing hydrogels have extremely low non-specific absorption of labeled target molecules, providing low background levels. Some hydrogel materials do not have this type of homogeneous interconnected macroporosity, thus large target molecules cannot readily diffuse through them. Additionally, they nearly always experience non-specific absorption of labeled target molecules, limiting their usefulness in sensor applications. A method is provided for preparing sugar polyacrylate hydrogels with functional chemical groups which covalently bond oligonucleotides and peptides.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 31, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark S. Spector, David A. Stenger, Charles H. Patterson, Jr., Brett D. Martin, Paul T. Charles
  • Patent number: 7749438
    Abstract: Periodic mesoporous organosilicas (PMO) which incorporate an optically active molecule into the material for use as an optical indicator of target binding. This material combines the stability, selectivity, and high density of binding sites characteristic of the PMO with the sensitivity and selectivity of the optically active molecule. The material undergoes a change when exposed to a sample containing a target molecule. The change can be observed by visual inspection or through the use of fluorescence spectra.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: July 6, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mazyar Zeinali, Brandy J White, Paul T Charles, Michael A Markowitz
  • Publication number: 20100081205
    Abstract: Periodic mesoporous organosilicas (PMO) which incorporate an optically active molecule into the material for use as an optical indicator of target binding. This material combines the stability, selectivity, and high density of binding sites characteristic of the PMO with the sensitivity and selectivity of the optically active molecule. The material undergoes a change when exposed to a sample containing a target molecule. The change can be observed by visual inspection or through the use of fluorescence spectra.
    Type: Application
    Filed: August 17, 2006
    Publication date: April 1, 2010
    Inventors: Mazyar Zeinali, Brandy J. White, Paul T. Charles, Michael A. Markowitz
  • Patent number: 5847019
    Abstract: The presently claimed invention is directed to novel biochips and a method for forming said biochips and novel photoactivatable compounds, 2,6-DOCA, 2-NOCA and LC-ASA Amine.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: December 8, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David W. Conrad, Paul T. Charles, Jr.
  • Patent number: 5736257
    Abstract: The presently claimed invention is directed to novel biochips and a method for forming said biochips and novel photoactivatable compounds, 2,6-DOCA, 2-NOCA and LC-ASA Amine.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: April 7, 1998
    Inventors: David W. Conrad, Paul T. Charles, Jr.