Patents by Inventor Paul V. Kelsey

Paul V. Kelsey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6926876
    Abstract: The invention is directed to a method of producing polycrystaline silicon metal from a silicon halide plasma source. The silicon halide is split into silicon and halide ions in an inductively coupled plasma and silicon ions are then condensed to form molten silicon metal that can be vacuum cast into polysilicon ingots. The halide ions are separated and recycled into silicon halide gas over a silicon dioxide bed. In this way, high grade polysilicon is produced without a metallurgical grade silicon precursor and the process these processes consumes the byproducts in a continuous manner madding it less expensive than traditional methods of producing polysilicon and more environmentally friendly.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: August 9, 2005
    Inventor: Paul V. Kelsey
  • Patent number: 6838020
    Abstract: The invention is directed to luminescent materials containing isotopically-enriched atomic elements and methods of making these luminescent materials. Individual embodiments of the invention include isotopically-enriched ZnO:Zn, ZnS:Cu:Cl, Zn2SiO4:Mn, Y2O2S:Eu, Gd2O2S:Tb and CaWO4 phosphors as well as methods of synthesizing these luminescent materials using isotopically-enriched starting materials.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: January 4, 2005
    Assignee: Isonics Corporation
    Inventor: Paul V. Kelsey
  • Publication number: 20030133853
    Abstract: The invention is directed to a method of producing polycrystaline silicon metal from a silicon halide plasma source. The silicon halide is split into silicion and halide ions in an inductively coupled plasma and silicon ions are then condensed to form molten silicon metal that can be vacuum cast into polysilicon ingots. The halide ions are separated and recycled into silicon halide gas over a silicon dioxide bed. In this way, high grade polysilicon is produced without a metallurgical grade silicon precursor and the process these processes consumes the byproducts in a continuous manner madding it less expensive than traditional methods of producing polysilicon and more environmentally friendly.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 17, 2003
    Inventor: Paul V. Kelsey
  • Publication number: 20030094597
    Abstract: The invention is directed to luminescent materials containing isotopically-enriched atomic elements and methods of making these luminescent materials. Individual embodiments of the invention include isotopically-enriched ZnO:Zn, ZnS:Cu:Cl, Zn2SiO4:Mn, Y2O2S:Eu, Gd2O2S:Tb and CaWO4 phosphors as well as methods of synthesizing these luminescent materials using isotopically-enriched starting materials.
    Type: Application
    Filed: November 15, 2002
    Publication date: May 22, 2003
    Inventor: Paul V. Kelsey
  • Patent number: 5516595
    Abstract: The invention comprises a method of making self-supporting ceramic and ceramic composite structures by the oxidation reaction of a body of molten parent metal precursor with a vapor-phase oxidant to form an oxidation reaction product. This reaction or growth is continued to form a thick, self-supporting ceramic or ceramic composite body. The body is recovered and in a separate subsequent operation, at least a portion of a surface is coated with one or more materials in order to effect desired changes in the properties of the surface, e.g., hardness, corrosion resistance.
    Type: Grant
    Filed: November 16, 1994
    Date of Patent: May 14, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Adam J. Gesing, Michael A. Rocazella, Christopher R. Kennedy, Daniel J. Frydrych, Robert A. Wolffe, Paul V. Kelsey, Alvin P. Gerk
  • Patent number: 5288670
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies, and to novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of a molten parent metal actinide into (1) a bed or mass containing boron carbide and, optionally, (2) at least one of a boron donor material (i.e., a boron-containing material) and a carbon donor material (i.e., a carbon-containing material), (3) a bed or mass comprising a mixture of a boron donor material and a carbon donor material and, optionally, (4) one or more inert fillers in any of the above masses, to form the body.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: February 22, 1994
    Assignee: Lanxide Technology Company, LP
    Inventor: Paul V. Kelsey
  • Patent number: 5166105
    Abstract: This invention relates generally to a novel method of preparing self-supporting bodies, and to novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of a molten parent metal actinide into (1) a bed or mass containing boron carbide and, optionally, (2) at least one of a boron donor material (i.e., a boron-containing material) and a carbon donor material (i.e., a carbon-containing material), (3) a bed or mass comprising a mixture of a boron donor material and a carbon donor material and, optionally, (4) one or more inert fillers in any of the above masses, to form the body.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: November 24, 1992
    Assignee: Lanxide Technology Company, LP
    Inventor: Paul V. Kelsey
  • Patent number: 4398980
    Abstract: A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.
    Type: Grant
    Filed: July 24, 1981
    Date of Patent: August 16, 1983
    Inventors: Paul V. Kelsey, Jr., William T. Siegel
  • Patent number: 4014812
    Abstract: Phosphors having the general formula (A.sub.1.sub.-x RE.sub.x).sub.2 Hf.sub.2 O.sub.7 are disclosed wherein A is selected from the group consisting of yttrium, gadolium, lanthanum, scandium and lutetium; RE is selected from the group consisting of praseodymium, samarium, europium, terbium, dysprosium, holmium, erbium and thulium; and x is from about 0.001 to 0.10. The phosphors are prepared by dissolving an oxide of A and an oxide of RE in a mineral acid and dissolving HfOCl.sub.2 in water and combining the two solutions. A precipitating agent such as oxalic acid is added and the precipitate is washed, dried and fired to produce the phosphors.
    Type: Grant
    Filed: May 19, 1975
    Date of Patent: March 29, 1977
    Assignee: GTE Sylvania Incorporated
    Inventors: Paul V. Kelsey, Jr., James E. Mathers
  • Patent number: 4006097
    Abstract: A phosphor composition having the general formula HfO.sub.2 :Yb with ytterbium being present in an amount of from 0.005 to 0.10 moles per mole of hafnium is disclosed. The phosphor can be prepared from the mixed oxides or from the oxalates, carbonates, or hydroxides by precipitating the latter from an aqueous solution. Firing takes place under a reducing atmosphere, preferably nitrogen, to reduce the ytterbium to the plus 2 ion. The phosphor is a bright green emitter under ultraviolet, x-radiation and cathode ray excitation.
    Type: Grant
    Filed: May 5, 1975
    Date of Patent: February 1, 1977
    Assignee: GTE Sylvania Incorporated
    Inventor: Paul V. Kelsey, Jr.