Patents by Inventor Paul V. MOONJELLY

Paul V. MOONJELLY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891938
    Abstract: Systems and methods for controlling a performance variable of an engine system are provided. An apparatus includes a response model circuit structured to apply a constraint to a response model that represents a relationship regarding a manipulated variable or a relationship between the performance variable and the manipulated variable. The apparatus further includes an optimization circuit structured to determine a target for the manipulated variable via the response model such that the target of the manipulated variable satisfies the constraint of the response model. The performance variable is indicative of performance of operation of the engine system and the manipulated variable is capable of affecting the performance variable. Operation of the engine system is adjusted based upon the target of the manipulated variable by controlling at least one of a fuel system or an air handling system of the engine system.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: February 6, 2024
    Assignee: Cummins Inc.
    Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
  • Publication number: 20220364492
    Abstract: Systems and methods for controlling a performance variable of an engine system are provided. An apparatus includes a response model circuit structured to apply a constraint to a response model that represents a relationship regarding a manipulated variable or a relationship between the performance variable and the manipulated variable. The apparatus further includes an optimization circuit structured to determine a target for the manipulated variable via the response model such that the target of the manipulated variable satisfies the constraint of the response model. The performance variable is indicative of performance of operation of the engine system and the manipulated variable is capable of affecting the performance variable. Operation of the engine system is adjusted based upon the target of the manipulated variable by controlling at least one of a fuel system or an air handling system of the engine system.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 17, 2022
    Applicant: Cummins Inc.
    Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
  • Patent number: 11401854
    Abstract: Systems and methods for optimizing a performance variable for an engine system. The method includes applying constraints of manipulated variables as well as performance variables, mechanical constraints and other engine responses to response models. The response models each represent a piecewise linear relationship between the manipulated variables and other engine responses including performance variables and constraints. The method also comprises determining an optimal target for each of the manipulated variables by using a quasi-simplex optimization process on the response models. The optimal targets of the manipulated variables correspond to an optimal value of the performance variable.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 2, 2022
    Assignee: Cummins Inc.
    Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
  • Patent number: 11053881
    Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: July 6, 2021
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Patent number: 11035310
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: June 15, 2021
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Patent number: 11028753
    Abstract: An apparatus includes an engine module, an in-cylinder content module, and an engine out NOx module. The engine module is structured to interpret engine in-cylinder data regarding an operating condition within a cylinder of an engine, wherein the engine in-cylinder data includes an engine torque, an engine speed, a rail pressure, and a start-of-injection. The in-cylinder content module is structured to interpret at least one additional in-cylinder data point regarding the operating condition within the cylinder of the engine. The engine out NOx module is structured to determine an engine out NOx amount responsive to the engine in-cylinder data and the at least one additional in-cylinder data point.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: June 8, 2021
    Assignee: Cummins, Inc.
    Inventors: Phanindra V. Garimella, Aniket Gupta, Ming-Feng Hsieh, Paul V. Moonjelly, Anant Puri, Gokul Vishwanathan
  • Patent number: 11002203
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: May 11, 2021
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Patent number: 10947914
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: March 16, 2021
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Patent number: 10808635
    Abstract: Unique engine controls and apparatuses, methods and systems relating to the same are disclosed. One embodiment is method which utilizes an in-cylinder [O2] mass fraction model to generate exhaust gas recirculation (EGR) fraction references for both transient and steady state operating conditions. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 20, 2020
    Assignee: Cummins Inc.
    Inventors: Quresh Sutarwala, Gayatri Adi, Paul V. Moonjelly
  • Patent number: 10774778
    Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: September 15, 2020
    Assignee: Cummins Inc.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Publication number: 20200040795
    Abstract: Systems and methods for optimizing a performance variable for an engine system. The method includes applying constraints of manipulated variables as well as performance variables, mechanical constraints and other engine responses to response models. The response models each represent a piecewise linear relationship between the manipulated variables and other engine responses including performance variables and constraints. The method also comprises determining an optimal target for each of the manipulated variables by using a quasi-simplex optimization process on the response models. The optimal targets of the manipulated variables correspond to an optimal value of the performance variable.
    Type: Application
    Filed: March 2, 2018
    Publication date: February 6, 2020
    Applicant: Cummins Inc.
    Inventors: Gayatri Adi, Kartavya Neema, Paul V. Moonjelly, Karla Carale Stricker Fuhs, Chinmay Rao
  • Publication number: 20200025121
    Abstract: Unique engine controls and apparatuses, methods and systems relating to the same are disclosed. One embodiment is method which utilizes an in-cylinder [O2] mass fraction model to generate exhaust gas recirculation (EGR) fraction references for both transient and steady state operating conditions. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Quresh Sutarwala, Gayatri Adi, Paul V. Moonjelly
  • Publication number: 20180274475
    Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.
    Type: Application
    Filed: October 14, 2015
    Publication date: September 27, 2018
    Applicant: CUMMINS INC.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Publication number: 20180274467
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Application
    Filed: October 14, 2015
    Publication date: September 27, 2018
    Applicant: CUMMINS INC.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Publication number: 20180266348
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Application
    Filed: October 14, 2015
    Publication date: September 20, 2018
    Applicant: CUMMINS INC.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Publication number: 20180266343
    Abstract: Methods and apparatuses for calibration and control of various engine subsystems using a target value approach. Under the target value approach, the control of each engine subsystem is separated or decoupled to include a set of target values, or a reference value set. A subsystem has a corresponding target determiner, which provides a target value set, or reference value set, in response to a basis variable set and optionally an overall subsystem target. The basis variable set includes parameters selected to robustly characterize the variables that affect the operation of the particular subsystem. The target determiner is optionally calibrated to provide a reference value set within specifications of the subsystem. A physical subsystem controller operates in response to the reference value set.
    Type: Application
    Filed: October 14, 2015
    Publication date: September 20, 2018
    Applicant: CUMMINS INC.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Publication number: 20180266340
    Abstract: A system for control of an internal combustion system having subsystems, each with different response times. Subsystems may include a fuel system, an air handling system, and an aftertreatment system, each being operated in response to a set of reference values generated by a respective target determiner. Calibration of each subsystem may be performed independently. The fuel system is controlled at a first time constant. The air handling system is controlled on the order of a second time constant slower than the first time constant. The aftertreatment system is controlled on the order of a third time constant slower than the second time constant. A subsystem manager is optionally in operative communication with each target determiner to coordinate control. Generally, dynamic parameters from slower subsystems are treated as static parameters when determining reference values for controlling a faster subsystem.
    Type: Application
    Filed: October 14, 2015
    Publication date: September 20, 2018
    Applicant: CUMMINS INC.
    Inventors: Phanindra V. Garimella, Paul V. Moonjelly, Edmund P. Hodzen, Ming-feng Hsieh, Gayatri Adi, Gokul Vishwanathan
  • Patent number: 9903306
    Abstract: A system and method for measuring fuel pressure decreases in a fuel accumulator caused by a fuel injector of an internal combustion engine is provided. The system includes the ability to stop a fuel flow to a fuel accumulator of the engine. Pressure signals are transmitted to a control system of the engine until the fuel pressure in the fuel accumulator drops by a predetermined amount, at which time fuel flow is re-enabled. The pressure signals are then analyzed to determine the amount or quantity of fuel delivered by each fuel injector. The system and method maintain engine and emissions performance by limiting the amount of fuel pressure decrease in the fuel accumulator.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 27, 2018
    Assignee: CUMMINS INC.
    Inventors: David M. Carey, Paul V. Moonjelly
  • Publication number: 20180038255
    Abstract: An apparatus includes an engine module, an in-cylinder content module, and an engine out NOx module. The engine module is structured to interpret engine in-cylinder data regarding an operating condition within a cylinder of an engine, wherein the engine in-cylinder data includes an engine torque, an engine speed, a rail pressure, and a start-of-injection. The in-cylinder content module is structured to interpret at least one additional in-cylinder data point regarding the operating condition within the cylinder of the engine. The engine out NOx module is structured to determine an engine out NOx amount responsive to the engine in-cylinder data and the at least one additional in-cylinder data point.
    Type: Application
    Filed: February 9, 2016
    Publication date: February 8, 2018
    Applicant: Cummins, Inc.
    Inventors: Phanindra V. Garimella, Aniket Gupta, Ming-Feng Hsieh, Paul V. Moonjelly, Anant Puri, Gokul Vishwanathan
  • Patent number: 9719457
    Abstract: This disclosure provides system and method that can determine hydraulic start of injection (SOI) in engines using an in-cylinder pressure sensor. The system and method determine apparent heat release rate (AHRR) curve data for the cylinder from the pressure information provided by the in-cylinder pressure sensors, and the hydraulic SOI from the derivative of the AHRR curve data. The system and method provide diagnostic, control and/or compensation opportunities for fuel injector operation in high pressure fuel rail engine systems without use of expensive or complex fuel injector components.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: August 1, 2017
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Paul V. Moonjelly, Richard A. Booth, Lester L. Peters, Jeffrey C. Huang, Phanindra Garimella