Patents by Inventor Paul Xu

Paul Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972062
    Abstract: A keyboard may be provided that has keys overlapped by a touch sensor. The keyboard may have key sensor circuitry for monitoring switching in the keys for key press input. The keyboard may also have touch sensor circuitry such as capacitive touch sensor circuitry that monitors capacitive electrodes in the touch sensor for touch sensor input such as multitouch gesture input. The keyboard may include an outer layer of fabric that overlaps the keys. The fabric may have openings that are arranged to form alphanumeric characters. Light sources may emit light that passes through the openings and illuminates the alphanumeric characters. The touch sensor may have signal lines that are not visible through the openings. The signal lines may be transparent, may be covered by a diffuser, or may circumvent the openings so that they do not overlap.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: April 30, 2024
    Assignee: Apple Inc.
    Inventors: Paul Xiaopeng Wang, Chia Chi Wu, Qiliang Xu, Zheng Gao, Daniel D. Sunshine, Aidan N. Zimmerman
  • Publication number: 20240111528
    Abstract: A technique to execute transpose and compute operations may include retrieving a set of machine instructions from an instruction buffer of a data processor. The instruction buffer has multiple entries, and each entry stores one machine instruction. A machine instruction from the set of machine instructions is executed to transpose a submatrix of an input tensor and perform computations on column elements of the submatrix. The machine instruction combines the transpose operation with computational operations into a single machine instruction.
    Type: Application
    Filed: September 21, 2022
    Publication date: April 4, 2024
    Inventors: Xiaodan Tan, Paul Gilbert Meyer, Sheng Xu, Ron Diamant
  • Publication number: 20240103813
    Abstract: An integrated circuit that combines transpose and compute operations may include a transpose circuit coupled to a set of compute channels. Each compute channel may include multiple arithmetic logic unit (ALU) circuits coupled in series. The transpose circuit is operable to receive an input tensor, transpose the input tensor, and output a transposed tensor to the set of compute channels. The set of compute channels is operable to generate outputs in parallel, with each of the outputs being generated from a corresponding vector of the transposed tensor.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 28, 2024
    Inventors: Xiaodan Tan, Paul Gilbert Meyer, Sheng Xu, Ron Diamant
  • Publication number: 20240101609
    Abstract: Embodiments of a recombinant human Parainfluenza Virus (hPIV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the hPIV F ectodomain trimer and methods of producing the hPIV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or inhibiting a hPIV infection in a subject by administering a effective amount of the recombinant hPIV F ectodomain trimer to the subject.
    Type: Application
    Filed: December 12, 2023
    Publication date: March 28, 2024
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servi, Institute for Research in Biomedicine
    Inventors: Baoshan Zhang, Guillaume Stewart-Jones, Tongqing Zhou, John Mascola, Kai Xu, Yongping Yang, Paul Thomas, Gwo-Yu Chuang, Li Ou, Peter Kwong, Yaroslav Tsybovsky, Wing-Pui Kong, Aliaksandr Druz, Davide Corti, Antonio Lanzavecchia
  • Patent number: 11928211
    Abstract: Systems and methods are provided for implementing a machine learning approach to modeling entity behavior. Fixed information and periodically updated information may be utilized to predict the behavior of an entity. By incorporating periodically updated information, the system is able to maintain an up-to-date prediction of each entity's behavior, while also accounting for entity action with respect to ongoing obligations. The system may generate behavior scores for the set of entities. In some embodiments, the behavior scores that are generated may indicate the transactional risk associated with each entity. Using the behavior scores generated, a user may be able to assess the credit riskiness of individual entities and instruct one or more individuals assigned to the entities to take one or more actions based on the credit riskiness of the individual entities.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: March 12, 2024
    Assignee: Palantir Technologies Inc.
    Inventors: Paul Gribelyuk, Han Xu, Kelvin Lau, Pierre Cholet
  • Publication number: 20240080482
    Abstract: An apparatus for decoding frames of a compressed video data stream having at least one frame divided into partitions, includes a memory and a processor configured to execute instructions stored in the memory to read partition data information indicative of a partition location for at least one of the partitions, decode a first partition of the partitions that includes a first sequence of blocks, decode a second partition of the partitions that includes a second sequence of blocks identified from the partition data information using decoded information of the first partition.
    Type: Application
    Filed: November 2, 2023
    Publication date: March 7, 2024
    Inventors: Yaowu Xu, Paul Wilkins, James Bankoski
  • Patent number: 9053898
    Abstract: A method (100) creates a braze joint (58) between an anode plate (52) and a piece of graphite (56) of an x-ray tube (38). The method (100) includes receiving (102) the anode plate (52) and the piece of graphite (56). A barrier layer (66) and a braze layer (62) are arranged (104, 106, 108) between the anode plate (52) and the piece of graphite (56), where the barrier layer (66) is between the piece of graphite (56) and the brazing layer (62). The barrier layer (66) is heated (110) with the braze layer (62) to create the braze joint (58) between the anode plate (52) and the piece of graphite (56).
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 9, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Kevin Charles Kraft, Ming-Wei Paul Xu, Min He, Gerald James Carlson
  • Patent number: 9053897
    Abstract: An anode (30) is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (50). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer (52) and a ductile refractory metal layer (54), at least on a focal track portion (36). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to form a vacuum plasma sprayed high-Z refractory metal layer (56), at least on the focal track portion.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: June 9, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Kevin Charles Kraft, Ming-Wei Paul Xu, Min He, Gerald James Carlson
  • Patent number: 8948344
    Abstract: The present invention relates to X-ray generating technology in general, in particular, it relates to an anode disk element (1) for an X-ray generating device (21). The generation of electromagnetic radiation may be considered to be quite inefficient, since a substantial part of energy applied to a focal track is converted to heat rather than X-radiation. Thus, a limiting factor in the operation of X-ray tubes is the cooling of the anode element and more specifically the focal track. In the present invention, an anode disk element is provided, with an improved dissipation of heat from the focal track. Thus, the anode disk element may sustain increased heat while maintaining structural integrity. The anode disk element (1) comprises at least a first surface (2) and a second surface (3), with the first surface (2) comprising a focal track (4) and the second surface (3) comprising a conductive coating (5).
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Kevin Kraft, Gerald James Carlson, Paul Xu
  • Patent number: 8923485
    Abstract: An anode disk element for the generation of X-rays that provides improved dissipation of heat from a focal track includes an anisotropic thermal conductivity. The anode disk element includes a focal track and at least one heat dissipating element. The anode disk element is rotatable about a rotational axis with the focal track being rotationally symmetrical to the rotational axis. The at least one heat dissipating element is configured for heat dissipation from the focal track in the direction of reduced thermal conductivity of the anode disk element.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: December 30, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Kevin Kraft, Gerald J. Carlson, Paul Xu
  • Publication number: 20140355742
    Abstract: A method (100) creates a braze joint (58) between an anode plate (52) and a piece of graphite (56) of an x-ray tube (38). The method (100) includes receiving (102) the anode plate (52) and the piece of graphite (56). A barrier layer (66) and a braze layer (62) are arranged (104, 106, 108) between the anode plate (52) and the piece of graphite (56), where the barrier layer (66) is between the piece of graphite (56) and the brazing layer (62). The barrier layer (66) is heated (110) with the braze layer (62) to create the braze joint (58) between the anode plate (52) and the piece of graphite (56).
    Type: Application
    Filed: December 21, 2012
    Publication date: December 4, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Kevin Charles Kraft, Ming-Wei Paul Xu, Min He, Gerald James Carlson
  • Publication number: 20130259205
    Abstract: An anode (30) is formed by building a carbon, such as a carbon reinforced carbon composite, or other ceramic substrate (50). A ductile, refractory metal is electroplated on the ceramic substrate to form a refractory metal carbide layer (52) and a ductile refractory metal layer (54), at least on a focal track portion (36). A high-Z refractory metal is vacuum plasma sprayed on the ductile refractory metal layer to forma vacuum plasma sprayed high-Z refractory metal layer (56), at least on the focal track portion.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 3, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Kevin Charles Kraft, Ming-Wei Paul Xu, Min He, Gerald James Carlson
  • Publication number: 20120236997
    Abstract: An alloy comprising at least two refractory metals and a method for forming such alloy are proposed. In the alloy, a first refractory metal such as tantalum forming a minor portion of the alloy is completely dissolved in a second refractory metal such as tungsten forming a major portion of the alloy. The alloy may be formed by providing the two refractory metals in a common crucible (step S1), melting both refractory metals by application of an electron beam (step S2), mixing the molten refractory metals (step S3) and solidifying the melt (step S4). Due to the possible complete mixing of the refractory metal components in a molten state, improved material properties of the solidified alloy may be achieved. Furthermore, due to the use of tantalum instead of rhenium together with tungsten, a cheap and resistant refractory metal alloy may be produced, which alloy may be used for example for forming a focal track region of an X-ray anode.
    Type: Application
    Filed: November 30, 2010
    Publication date: September 20, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Paul Xu, Kevin Kraft, Min He, Gerald James Carlson
  • Publication number: 20120099703
    Abstract: The present invention relates to X-ray tube technology in general. Most of the energy applied to the focal spot via electron bombardment is converted to heat; the generation of electromagnetic radiation may be considered to be quite inefficient. One of the central limitations of X-ray tubes is the cooling, thus the dissipation of heat, of the anode element, in particular the focal track. Consequently, an anode disk element that may sustain increased heat while still maintaining structural integrity and furthermore that may provide improved dissipation of heat from the focal track is presented. According to the present invention, an anode disk element (1), comprising an anisotropic thermal conductivity, for the generation of X-rays is provided. The anode disk element (1) comprises a focal track (4) and at least one heat dissipating element (5). The anode disk element (1) is rotatable about a rotational axis (6) with the focal track (4) being rotationally symmetrical to the rotational axis (6).
    Type: Application
    Filed: June 24, 2010
    Publication date: April 26, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Kevin Kraft, Gerald J. Carlson, Paul Xu
  • Publication number: 20120093296
    Abstract: The present invention relates to X-ray generating technology in general, in particular, it relates to an anode disk element (1) for an X-ray generating device (21). The generation of electromagnetic radiation may be considered to be quite inefficient, since a substantial part of energy applied to a focal track is converted to heat rather than X-radiation. Thus, a limiting factor in the operation of X-ray tubes is the cooling of the anode element and more specifically the focal track. In the present invention, an anode disk element is provided, with an improved dissipation of heat from the focal track. Thus, the anode disk element may sustain increased heat while maintaining structural integrity. The anode disk element (1) comprises at least a first surface (2) and a second surface (3), with the first surface (2) comprising a focal track (4) and the second surface (3) comprising a conductive coating (5).
    Type: Application
    Filed: June 22, 2010
    Publication date: April 19, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Kevin Kraft, Gerald James Carlson, Paul Xu
  • Publication number: 20120093292
    Abstract: The invention relates to an X-ray tube with a rotatable anode, an X-ray imaging system and a method for adjusting the focal track of an X-ray tube with a rotatable anode. In order to improve the accuracy of X-ray tubes with rotating anodes and the run out characteristics of rotatable anodes, an X-ray tube with an envelope housing a cathode and an anode assembly is provided, wherein the anode assembly comprises a rotatable disk provided with an annular target forming a focal track, which focal track is rotationally symmetric around a symmetry axis, and a rotor stem for supporting the disk, which stem is rotatably supported around a primary axis of rotation. The stem is provided with a mounting surface to support the disk and the disk is provided with an abutment surface to be mounted to the mounting surface. According to the invention, correction means are arranged between the mounting surface and the abutment surface such that a run-out of the focal track in relation to the axis of rotation is adjustable.
    Type: Application
    Filed: June 28, 2010
    Publication date: April 19, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Kevin Kraft, Gerald James Carlson, Mark Maska, Paul Xu
  • Patent number: 7209544
    Abstract: An x-ray tube cathode assembly (28) includes a support arm (36) comprising a first metal. A ceramic insulator (70, 82) has a first metalized surface (72, 86) wherein the metalized surfaces comprise a desired amount of the first metal. A first member of filler material (90) is in contact with the support arm (36) and the first metalized surface (72, 86) of the ceramic insulator (70, 82), the first member of filler material comprising at least a second metal (96a, 96b) wherein a first alloy system (FIG. 5) comprising the first and second metals includes an alloy minimum point percentage composition (P) of the first and second metals having a first alloy system minimum melting point (M) for the alloy minimum point percentage composition that is lower than both of the melting point of the first metal and second metal.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Paul Xu, George Awad, Salvatore Perno, Qing K. Lu
  • Publication number: 20060140344
    Abstract: An x-ray tube cathode assembly (28) includes a support arm (36) comprising a first metal. A ceramic insulator (70, 82) has a first metalized surface (72, 86) wherein the metalized surfaces comprise a desired amount of the first metal. A first member of filler material (90) is in contact with the support arm (36) and the first metalized surface (72, 86) of the ceramic insulator (70, 82), the first member of filler material comprising at least a second metal (96a, 96b) wherein a first alloy system (FIG. 5) comprising the first and second metals includes an alloy minimum point percentage composition (P) of the first and second metals having a first alloy system minimum melting point (M) for the alloy minimum point percentage composition that is lower than both of the melting point of the first metal and second metal.
    Type: Application
    Filed: February 20, 2004
    Publication date: June 29, 2006
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Paul Xu, George Awad, Salvatore Perno, Qing Lu
  • Patent number: RE49948
    Abstract: The present disclosure relates to HIF-2? inhibitors and methods of making and using them for treating cancer. Certain compounds were potent in HIF-2? scintillation proximity assay, luciferase assay, and VEGF ELISA assay, and led to tumor size reduction and regression in 786-O xenograft bearing mice in vivo.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: April 30, 2024
    Assignee: Peloton Therapeutics, Inc.
    Inventors: Darryl David Dixon, Jonas Grina, John A. Josey, James P. Rizzi, Stephen T. Schlachter, Eli M. Wallace, Bin Wang, Paul Wehn, Rui Xu, Hanbiao Yang