Patents by Inventor Pavel POKUTNEV

Pavel POKUTNEV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9146327
    Abstract: A method and system for determining geometric imaging properties of a flat panel detector in an x-ray inspection system are described herein. The method can include arranging a calibration phantom between an x-ray source and the flat panel detector, the calibration phantom including at least one discrete geometric object. Additionally, the method can include recording at least one x-ray image of the calibration phantom with the flat panel detector. At least one discrete geometric shape is generated in the x-ray image by imaging the at least one discrete geometric object of the calibration phantom. Further, the method can include determining a location-dependent distortion error of the flat panel detector from the at least one x-ray image on the basis of at least one characteristic of the at least one discrete geometric shape.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 29, 2015
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: Alexander Suppes, Pavel Pokutnev, Eberhard Neuser, Nils Rothe
  • Patent number: 9042634
    Abstract: Aspects of the invention provide a solution for analyzing an object, such as a part of a turbo machine. A planar surface is generated using a curved reformat function based on a surface of a three-dimensional (3D) image of an object. A peel of the 3D image that is adjacent to the surface is determined. Based on the peel, a second planar surface is generated. These two, and/or other similarly generated planar surfaces can be analyzed to determine characteristics of the original object.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: May 26, 2015
    Assignee: General Electric Company
    Inventors: Sheri George, Haribaskar Govindasamy, Utkarsh Madhav Kulkarni, Pavel Pokutnev, Marko Rosenmueller, Alexander Suppes
  • Publication number: 20140198946
    Abstract: Aspects of the invention provide a solution for analyzing an object, such as a part of a turbo machine. A planar surface is generated using a curved reformat function based on a surface of a three-dimensional (3D) image of an object. A peel of the 3D image that is adjacent to the surface is determined. Based on the peel, a second planar surface is generated. These two, and/or other similarly generated planar surfaces can be analyzed to determine characteristics of the original object.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sheri George, Haribaskar Govindasamy, Utkarsh Madhav Kulkarni, Pavel Pokutnev, Marko Rosenmueller, Alexander Suppes
  • Publication number: 20140153694
    Abstract: A method for determining geometric imaging properties of a flat panel detector in an x-ray inspection system includes the steps arranging a calibration phantom between an x-ray source and the flat panel detector, wherein the calibration phantom comprises at least one discrete geometric object; recording at least one x-ray image of the calibration phantom with the flat panel detector, wherein at least one discrete geometric shape is generated in the x-ray image by imaging the at least one discrete geometric object of the calibration phantom; and determining a location-dependent distortion error of the flat panel detector from the at least one x-ray image on the basis of at least one characteristic of the at least one discrete geometric shape. All characteristics of the at least one discrete geometric shape used for determining the location-dependent distortion error are independent of the dimensions of the calibration phantom.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 5, 2014
    Inventors: Alexander SUPPES, Pavel POKUTNEV, Eberhard NEUSER, Nils ROTHE