Patents by Inventor Pavlin B. Entchev

Pavlin B. Entchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140318781
    Abstract: Methods and systems for completing a well including injecting stimulation fluid to stimulate a first interval in the reservoir. The stimulation fluid has a pressure sufficient to open a number of check valves in the first interval, allowing stimulation fluid to flow into the first interval. A number of ball sealers configured to block flow through the check valves are dropped into the well to stop the flow of stimulation fluid into the first interval and begin treatment of a second interval. The stimulation fluid is injected to stimulate a subsequent interval with pressure sufficient to open a number of check valves in the subsequent interval, allowing stimulation fluid to flow into the subsequent interval. The dropping of ball sealers is repeated until all intervals are treated. At least part of the check valves are configured to allow stimulation fluid to flow into a distribution chamber with multiple openings.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 30, 2014
    Inventors: Curtis W. Kofoed, Pavlin B. Entchev, Stuart R. Keller, Jeffrey D. Spitzenberger
  • Publication number: 20140262260
    Abstract: A sand control device is used for restricting the flow of particles from a subsurface formation into a tubular body within a wellbore during production operations. The sand control device is divided into compartments along its length that provide redundancy for particle filtration. Each compartment first comprises a base pipe. The base pipe defines an elongated tubular body having a permeable section and an impermeable section within each compartment. Each compartment also comprises a first filtering conduit and a second filtering conduit. The filtering conduits comprise filtering media and generally circumscribe the base pipe. The filtering conduits are arranged so that the first filtering conduit is adjacent to the non-permeable section of the base pipe, while the second filtering conduit is adjacent to the permeable section of the base pipe.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 18, 2014
    Inventors: Christian S. Mayer, Charles S. Yeh, David A. Howell, Pavlin B. Entchev, Eric R. Grueschow, Ted A. Long, Tracy J. Moffett, Michael D. Barry, Michael T. Hecker, John S. Sladic, Christopher A. Hall, Stephen McNamee
  • Publication number: 20140131035
    Abstract: A tool assembly for performing a wellbore operation including an actuatable tool, a location device, and on-board controller are together dimensioned and arranged to be deployed in the wellbore as an autonomous unit. The actuatable tool, such as a perforating gun having associated charges, perforates a wellbore along a selected zone of interest. The location device, such as casing collar locator, senses the location of the actuatable tool based on a physical signature provided along the wellbore. The on-board controller or micro-processor is configured to send an activation signal to the actuatable tool when the location device has recognized a selected location of the tool based on the physical signature. The tool assembly further includes a multi-gate safety system. The safety system prevents premature activation of the actuatable tool.
    Type: Application
    Filed: March 9, 2012
    Publication date: May 15, 2014
    Inventors: Pavlin B. Entchev, Renzo M. Angeles Boza, Randy C. Tolman, George R. King, Robert C. Stanton, Elton Winemiller, Jason Z. Gahr, Peter W. Sauermilch
  • Patent number: 8657005
    Abstract: Systems and methods for creating a hydraulic barrier at an interface between high and low permeability regions that may exist in high permeability-contrast subterranean formations. These systems and methods may include providing injection and/or production wells that are completed within the high and/or low permeability regions, supplying a pore throat blocking agent to an interface between the high and low permeability regions, and forming the hydraulic barrier at the interface. The pore throat blocking agent may be sized to substantially flow through the high permeability region while being substantially blocked, or occluded, from the low permeability region. In some embodiments, the hydraulic barrier may be greater than one acre (0.4 hectare) in area. In some embodiments, the subterranean formation may include an oil reservoir. In some embodiments, the high and/or low permeability formations may be swept concurrently and/or independently to remove oil from the oil reservoir.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Pavlin B. Entchev, Donald E. Owens, III, Robert D. Kaminsky
  • Publication number: 20130299164
    Abstract: Systems and methods for improving functional access to subterranean formations that include a well, which includes a casing string having at least one casing conduit that extends and provides a hydraulic connection between a surface region and the subterranean formation. Performing a plurality of downhole operations utilizing a casing string that constitutes a plurality of hydraulic pathways between the surface region and the subterranean formation. In some embodiments, the plurality of downhole operations may be simultaneous operations and/or may be associated with at least one of a plurality of operational states including a drilling state, completing state, stimulating state, producing state, abandoning state, and/or killing state. In some embodiments, systems and methods may include a plurality of production control assemblies to control and/or monitor the downhole operations.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 14, 2013
    Applicant: Exxon Mobile Upstream Research Company
    Inventors: Bruce A. Dale, Pavlin B. Entchev, Stuart R. Keller
  • Publication number: 20130255943
    Abstract: A wellbore apparatus and method comprising a first wellbore tool having a primary flow path and at least one secondary flow path and a second wellbore tool having a primary flow path and secondary flow path. A radial center of the primary flow path in the first wellbore tool is offset from a radial center of the primary flow path in the second wellbore tool which comprises a crossover joint connecting the first wellbore tool to the second wellbore tool having a primary flow path fluidly connecting the primary flow path of the first wellbore tool to the primary flow path of the second wellbore tool, and at least one secondary flow path fluidly connecting the at least one secondary flow path of the first wellbore tool to the at least one secondary flow path of the second wellbore tool.
    Type: Application
    Filed: November 17, 2011
    Publication date: October 3, 2013
    Inventors: Charles S. Yeh, Michael D. Barry, Michael T. Hecker, Pavlin B. Entchev, Patrick C. Hyde
  • Publication number: 20130255939
    Abstract: Methods and apparatus for actuating a downhole tool in wellbore includes acquiring a CCL data set or log from the wellbore that correlates recorded magnetic signals with measured depth, and selects a location within the wellbore for actuation of a wellbore device. The CCL log is then downloaded into an autonomous tool. The tool is programmed to sense collars as a function of time, thereby providing a second CCL log. The autonomous tool also matches sensed collars with physical signature from the first CCL log and then self-actuates the wellbore device at the selected location based upon a correlation of the first and second CCL logs.
    Type: Application
    Filed: November 17, 2011
    Publication date: October 3, 2013
    Inventors: Krishnan Kumaran, Niranjan A. Subrahmanya, Pavlin B. Entchev, Randy C. Tolman, Renzo Moises Angeles Boza
  • Publication number: 20130248172
    Abstract: A communications module and methods for downhole operations having utility with production of hydrocarbon fluids from a wellbore, including at least one alternate flow channel and an electrical circuit. Generally, the electrical circuit is pre-programmed to (i) receive a signal and, in response to the received signal, deliver an actuating command signal. The communications module further has a transmitter-receiver. The communications module allows a downhole tool to be actuated within a completion interval of a wellbore without providing an electric line or a working string from the surface. The tool may be actuated in response to a reading from a sensing tool, or in response to a signal emitted in the wellbore by a downhole carrier, or information tag.
    Type: Application
    Filed: November 2, 2011
    Publication date: September 26, 2013
    Inventors: Renzo Moises Angeles Boza, Tracy J. Moffett, Pavlin B. Entchev, Charles S. Yeh
  • Publication number: 20130248174
    Abstract: A tool assembly is provided that includes an actuatable tool such as a valve or a setting tool. And includes a location device that senses the location of the tool assembly within a tubular body based on a physical signature. The tool assembly also includes an on-board controller configured to send an activation signal to the actuatable tool when the location device has recognized a selected location of the tool based on the physical signature. The actuatable tool, the location device, and the on-board controller are together dimensioned and arranged to be deployed in the wellbore as an autonomous unit.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 26, 2013
    Inventors: Bruce A. Dale, Randy C. Tolman, Pavlin B. Entchev, Renzo Moises Angeles Boza, Chris E. Shuchart, Eric R. Grueschow, Charles S. Yeh
  • Publication number: 20130220604
    Abstract: A method of creating a network of fractures in a reservoir is provided. The method includes designing a desired fracture network system, and determining required in situ stresses to create the desired fracture network within the reservoir. The method further includes designing a layout of wells to alter the in situ stresses within the stress field, and then injecting a fracturing fluid under pressure into the reservoir to create an initial set of fractures within the reservoir. The method also includes monitoring the in situ stresses within the stress field, and modifying the in situ stresses within the stress field. The method then includes injecting a fracturing fluid under pressure into the reservoir in order to expand upon the initial set of fractures and to create the network of fractures. A method for producing hydrocarbons from a subsurface formation is also provided herein, wherein a fracture network is created from a single, deviated wellbore production.
    Type: Application
    Filed: August 29, 2011
    Publication date: August 29, 2013
    Inventors: Abdel Wadood M. El-Rabaa, Leonard V. Moore, Michael E. McCracken, Chris E. Shuchart, Pavlin B. Entchev, Stephen Karner, Jose Oliverio Alvarez
  • Patent number: 8469120
    Abstract: Drill bits are provided. The drill bits are of the fixed-cutter, rotary-type. The drill bits have a plurality of blades having cutting elements disposed therealong. Junk slots are formed between the respective blades. A knife opening is formed in at least two of the junk slots. Preferably, the knife openings are disposed substantially transverse to a longitudinal axis of the drill bit. The drill bit also has one or more ribbon cutters. The ribbon cutters cyclically protrude through knife openings in the junk slots in order to facilitate the fragmentation of cuttings ribbons moving through the junk slots during a drilling operation.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Pavlin B. Entchev, John H. Jackson, John K. Montgomery
  • Publication number: 20130062055
    Abstract: Autonomous units and methods for downhole, multi-zone perforation and fracture stimulation for hydrocarbon production. The autonomous unit may be a perforating gun assembly, a bridge plug assembly, or fracturing plug assembly. The autonomous units are dimensioned and arranged to be deployed within a wellbore without an electric wireline. The autonomous units may be fabricated from a friable material so as to self-destruct upon receiving a signal. The autonomous units include a position locator for sensing the presence of objects along the wellbore and generating depth signals in response. The autonomous units also include an on-board controller for processing the depth signals and for activating an actuatable tool at a zone of interest.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 14, 2013
    Inventors: Randy C. Tolman, Pavlin B. Entchev, Renzo M. Angeles Boza, Dennis H. Petrie, Kevin H. Searles, Abdel Wadood M. El-Rabaa
  • Publication number: 20120125631
    Abstract: A bridge plug arrangement includes a plug having an upper end and a bottom end. The bridge plug arrangement also optionally includes a cylindrical seat. The bridge plug arrangement further includes a tubular member. The tubular member may be part of a casing string. The tubular member is configured to receive the plug and, when used, the seat. The plug and/or the seat may be fabricated from a frangible material. A method for diverting fluids in a wellbore using the bridge plug arrangement is also provided. The method may include landing the plug onto the seat within the wellbore below a subsurface zone of interest. Treatment fluids are then injected into the wellbore, where they are diverted through perforations and into a formation. The plug and/or seat is then optionally broken into a plurality of pieces through use of a downward mechanical force.
    Type: Application
    Filed: April 13, 2010
    Publication date: May 24, 2012
    Applicants: RASGAS COMPANY LIMITED, EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Pavlin B. Entchev, William A. Sorem, Zhihua Wang, David A. Baker, John K. Montgomery, Larry Mercer, Dennis H. Petrie
  • Publication number: 20110265994
    Abstract: Systems and methods for creating a hydraulic barrier at an interface between high and low permeability regions that may exist in high permeability-contrast subterranean formations. These systems and methods may include providing injection and/or production wells that are completed within the high and/or low permeability regions, supplying a pore throat blocking agent to an interface between the high and low permeability regions, and forming the hydraulic barrier at the interface. The pore throat blocking agent may be sized to substantially flow through the high permeability region while being substantially blocked, or occluded, from the low permeability region. In some embodiments, the hydraulic barrier may be greater than one acre (0.4 hectare) in area. In some embodiments, the subterranean formation may include an oil reservoir. In some embodiments, the high and/or low permeability formations may be swept concurrently and/or independently to remove oil from the oil reservoir.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 3, 2011
    Inventors: Pavlin B. Entchev, Donald E. Owens, III, Robert D. Kaminsky
  • Patent number: 7980329
    Abstract: A method and system for drilling a wellbore is described. The system includes a wellbore with a variable density drilling mud, drilling pipe, a bottom hole assembly disposed in the wellbore and a drilling mud processing unit in fluid communication with the wellbore. The variable density drilling mud has compressible particles and drilling fluid. The bottom hole assembly is coupled to the drilling pipe, while the drilling mud processing unit is configured to separate the compressible particles from the variable density drilling mud. The compressible particles in this embodiment may include compressible hollow objects filled with pressurized gas and configured to maintain the mud weight between the fracture pressure gradient and the pore pressure gradient. In addition, the system and method may also manage the use of compressible particles having different characteristics, such as size, during the drilling operations.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul Matthew Spiecker, Pavlin B. Entchev, Ramesh Gupta, Richard Polizzotti, Barbara Carstensen, Dennis G. Peiffer, Norman Pokutylowicz
  • Publication number: 20100126771
    Abstract: Drill bits are provided. The drill bits are of the fixed-cutter, rotary-type. The drill bits have a plurality of blades having cutting elements disposed therealong. Junk slots are formed between the respective blades. A knife opening is formed in at least two of the junk slots. Preferably, the knife openings are disposed substantially transverse to a longitudinal axis of the drill bit. The drill bit also has one or more ribbon cutters. The ribbon cutters cyclically protrude through knife openings in the junk slots in order to facilitate the fragmentation of cuttings ribbons moving through the junk slots during a drilling operation.
    Type: Application
    Filed: April 21, 2008
    Publication date: May 27, 2010
    Inventors: Pavlin B. Entchev, John H. Jackson, John K. Montgomery
  • Publication number: 20100116553
    Abstract: A method and system for drilling a wellbore is described. The system includes a wellbore with a variable density drilling mud, drilling pipe, a bottom hole assembly disposed in the wellbore and a drilling mud processing unit in fluid communication with the wellbore. The variable density drilling mud has compressible particles and drilling fluid. The bottom hole assembly is coupled to the drilling pipe, while the drilling mud processing unit is configured to separate the compressible particles from the variable density drilling mud. The compressible particles in this embodiment may include compressible hollow objects filled with pressurized gas and configured to maintain the mud weight between the fracture pressure gradient and the pore pressure gradient. In addition, the system and method may also manage the use of compressible particles having different characteristics, such as size, during the drilling operations.
    Type: Application
    Filed: January 22, 2010
    Publication date: May 13, 2010
    Inventors: Paul Matthew Spiecker, Pavlin B. Entchev, Ramesh Gupta, Richard Polizzotti, Barbara Carstensen, Dennis G. Peiffer, Norman Pokutylowicz
  • Patent number: 7677332
    Abstract: A method and system for drilling a wellbore is described. The system includes a wellbore with a variable density drilling mud, drilling pipe, a bottom hole assembly disposed in the wellbore and a drilling mud processing unit in fluid communication with the wellbore. The variable density drilling mud has compressible particles and drilling fluid. The bottom hole assembly is coupled to the drilling pipe while the drilling mud processing unit is configured to separate the compressible particles from the variable density drilling mud. The compressible particles in this embodiment may include compressible hollow objects filled with pressurized gas an configured to maintain the mud weight between the fracture pressure gradient and the pore pressure gradient. In addition, the system and method may also manage the use of compressible particles having different characteristics, such as size, during the drilling operations.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul Matthew Spiecker, Pavlin B. Entchev, Ramesh Gupta, Richard Polizzotti, Barbara Carstensen, Dennis G. Peiffer, Norman Pokutylowicz
  • Publication number: 20090050374
    Abstract: A method and system for drilling a wellbore is described. The system includes a wellbore with a variable density drilling mud, drilling pipe, a bottom hole assembly disposed in the wellbore and a drilling mud processing unit in fluid communication with the wellbore. The variable density drilling mud has compressible particles and drilling fluid. The bottom hole assembly is coupled to the drilling pipe while the drilling mud processing unit is configured to separate the compressible particles from the variable density drilling mud. The compressible particles in this embodiment may include compressible hollow objects filled with pressurized gas an configured to maintain the mud weight between the fracture pressure gradient and the pore pressure gradient. In addition, the system and method may also manage the use of compressible particles having different characteristics, such as size, during the drilling operations.
    Type: Application
    Filed: February 13, 2007
    Publication date: February 26, 2009
    Inventors: Paul Matthew Spiecker, Pavlin B. Entchev, Ramesh Gupta, Richard Polizzotti, Barbara Carstensen, Dennis G. Peiffer, Norman Pokutylowicz
  • Publication number: 20080060849
    Abstract: Methods and apparatus for mitigating the effects of vibration of various tools, such as those used downhole, by utilizing a vibration isolation device that incorporates Shape Memory Alloys (SMAs). For instance, in some embodiments, a vibration isolation device may be designed and deployed in a manner such that, when a vibration isolation device is operated in an expected manner, the force on the SMAs from static loading is sufficient to induce partial phase transformation between the austenite and martensite phases. This partial phase transformation may result in a reduced stiffness of the vibration isolation device in comparison to a tool in either a full austenite phase or full martensite phase.
    Type: Application
    Filed: July 24, 2007
    Publication date: March 13, 2008
    Inventors: Pavlin B. Entchev, Stuart R. Keller