Patents by Inventor Pavlos M. Vranas

Pavlos M. Vranas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080313408
    Abstract: A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed.
    Type: Application
    Filed: August 22, 2008
    Publication date: December 18, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Martin Ohmacht, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Patent number: 7457303
    Abstract: A one-bounce data network comprises a plurality of nodes interconnected to each other via communication links, the network including a plurality of interconnected switch devices, said switch devices interconnected such that a message is communicated between any two switches passes over a single link from a source switch to a destination switch; and, the source switch concurrently sends a message to an arbitrary bounce switch which then sends the message to the destination switch.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: November 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Publication number: 20080222364
    Abstract: A system and method for supporting cache coherency in a computing environment having multiple processing units, each unit having an associated cache memory system operatively coupled therewith. The system includes a plurality of interconnected snoop filter units, each snoop filter unit corresponding to and in communication with a respective processing unit, with each snoop filter unit comprising a plurality of devices for receiving asynchronous snoop requests from respective memory writing sources in the computing environment; and a point-to-point interconnect comprising communication links for directly connecting memory writing sources to corresponding receiving devices; and, a plurality of parallel operating filter devices coupled in one-to-one correspondence with each receiving device for processing snoop requests received thereat and one of forwarding requests or preventing forwarding of requests to its associated processing unit.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk I. Hoenicke, Martin Ohmacht, Valentina Salapura, Pavlos M. Vranas
  • Patent number: 7386683
    Abstract: A method and apparatus for supporting cache coherency in a multiprocessor computing environment having multiple processing units, each processing unit having one or more local cache memories associated and operatively connected therewith. The method comprises providing a snoop filter device associated with each processing unit, each snoop filter device having a plurality of dedicated input ports for receiving snoop requests from dedicated memory writing sources in the multiprocessor computing environment. Each of the memory writing sources is directly connected to the dedicated input ports of all other snoop filter devices associated with all other processing units in a point-to-point interconnect fashion.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: June 10, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk I. Hoenicke, Martin Ohmacht, Valentina Salapura, Pavlos M. Vranas
  • Publication number: 20080133633
    Abstract: The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via “all-to-all” distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates eff
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gyan V. Bhanot, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Publication number: 20080133845
    Abstract: A method and apparatus for supporting cache coherency in a multiprocessor computing environment having multiple processing units, each processing unit having one or more local cache memories associated and operatively connected therewith. The method comprises providing a snoop filter device associated with each processing unit, each snoop filter device having a plurality of dedicated input ports for receiving snoop requests from dedicated memory writing sources in the multiprocessor computing environment. Each of the memory writing sources is directly connected to the dedicated input ports of all other snoop filter devices associated with all other processing units in a point-to-point interconnect fashion.
    Type: Application
    Filed: February 21, 2008
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk I. Hoenicke, Martin Ohmacht, Valentina Salapura, Pavlos M. Vranas
  • Patent number: 7380071
    Abstract: A system and method for supporting cache coherency in a computing environment having multiple processing units, each unit having an associated cache memory system operatively coupled therewith. The system includes a plurality of interconnected snoop filter units, each snoop filter unit corresponding to and in communication with a respective processing unit, with each snoop filter unit comprising a plurality of devices for receiving asynchronous snoop requests from respective memory writing sources in the computing environment; and a point-to-point interconnect comprising communication links for directly connecting memory writing sources to corresponding receiving devices; and, a plurality of parallel operating filter devices coupled in one-to-one correspondence with each receiving device for processing snoop requests received thereat and one of forwarding requests or preventing forwarding of requests to its associated processing unit.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 27, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk I. Hoenicke, Martin Ohmacht, Valentina Salapura, Pavlos M. Vranas
  • Patent number: 7373462
    Abstract: A method and apparatus for supporting cache coherency in a multiprocessor computing environment having multiple processing units, each processing unit having one or more local cache memories associated and operatively connected therewith. The method comprises providing a snoop filter device associated with each processing unit, each snoop filter device having a plurality of dedicated input ports for receiving snoop requests from dedicated memory writing sources in the multiprocessor computing environment. Each snoop filter device includes a plurality of parallel operating port snoop filters in correspondence with the plurality of dedicated input ports, each port snoop filter implementing one or more parallel operating sub-filter elements that are adapted to concurrently filter snoop requests received from respective dedicated memory writing sources and forward a subset of those requests to its associated processing unit.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk I. Hoenicke, Martin Ohmacht, Valentina Salapura, Pavlos M. Vranas
  • Publication number: 20080104367
    Abstract: A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.
    Type: Application
    Filed: July 18, 2005
    Publication date: May 1, 2008
    Inventors: Matthias A. Blumrich, Paul W. Coteus, Dong Chen, Alan Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Todd E. Takken, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Patent number: 7315877
    Abstract: The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via “all-to-all” distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates eff
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gyan V. Bhanot, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Patent number: 7313582
    Abstract: Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: December 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Gyan Bhanot, Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Patent number: 7305487
    Abstract: In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Patent number: 7174434
    Abstract: A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Martin Ohmacht, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Patent number: 7149920
    Abstract: Disclosed are an error recovery method and system for use with a communication system having first and second nodes, each of said nodes having a receiver and a sender, the sender of the first node being connected to the receiver of the second node by a first cable, and the sender of the second node being connected to the receiver of the first node by a second cable. The method comprising the step of after one of the nodes detects an error, both of the nodes entering the same defined state. In particular, the receiver of the first node enters an error state, stays in the error state for a defined period of time T, and, after said defined period of time T, enters a wait state. Also, the sender of the first node sends to the receiver of the second node an error message for a defined period of time Te, and after the defined period of time Te, the sender of the first node enters an idle state.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: December 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Matthew A. Blumrich, Dong Chen, Alan G. Gara, Philip Heidelberger, Dirk I. Hoenicke, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Publication number: 20040081155
    Abstract: Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 29, 2004
    Inventors: Gyan V Bhanot, Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20040078482
    Abstract: In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 22, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas
  • Publication number: 20040078405
    Abstract: The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via “all-to-all” distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order fac
    Type: Application
    Filed: August 22, 2003
    Publication date: April 22, 2004
    Inventors: Gyan V Bhanot, Dong Chen, Alan G. Gara, Mark E Giampapa, Philip Heidelberger, Burkhard D Steinmacher-Burow, Pavlos M Vranas
  • Publication number: 20040078493
    Abstract: A system and method for enabling high-speed, low-latency global tree communications among processing nodes interconnected according to a tree network structure. The global tree network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations include one or more of: global broadcast operations downstream from a root node to leaf nodes of a virtual tree, global reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node in the virtual tree.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 22, 2004
    Inventors: Matthias A Blumrich, Dong Chen, Paul W Coteus, Alan G Gara, Mark E Giampapa, Philip Heidelberger, Dirk Hoenicke, Burkhard D Steinmacher-Burow, Todd E Takken, Pavlos M Vranas
  • Publication number: 20040073590
    Abstract: Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 15, 2004
    Inventors: Gyan Bhanot, Matthias A. Blumrich, Dong Chen, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Burkhard D. Steinmacher-Burow, Pavlos M. Vranas
  • Publication number: 20040073758
    Abstract: A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 15, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Dirk Hoenicke, Martin Ohmacht, Burkhard D. Steinmacher-Burow, Todd E. Takken, Pavlos M. Vranas