Patents by Inventor Pawan Agarwal

Pawan Agarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9589719
    Abstract: Technologies are generally described for switchable patterned metal shield inductance structures. In some examples, an inductance structure on a substrate may include an inductor and a metal shield, where the metal shield separates and shields the inductor from the substrate. The configuration of the metal shield and the inductor may facilitate reduction in the overall inductance of the inductance structure. In particular, the metal shield may be configured to develop one or more eddy currents in response to an inductor-generated magnetic field. The eddy currents may then result in a magnetic field opposing the inductor-generated magnetic field, which may result in a reduction in the overall magnetic field and the overall inductance of the inductance structure. The metal shield may be switchable between multiple modes, where each mode may be effective to reduce the overall inductance by a different amount.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: March 7, 2017
    Assignee: WASHINGTON STATE UNIVERSITY
    Inventors: Deukhyoun Heo, Pawan Agarwal
  • Publication number: 20170047917
    Abstract: In some examples, a circuit is described. The circuit may be included in a digital phase-locked loop (PLL) and may include a first delay cell, a second delay cell, and a delay controller. The first delay cell may include a first inverter circuit that includes first and second transistors and may be configured to receive and to delay a first signal. The delay of the first inverter circuit may be based on first and second voltages respectively provided to the first and second transistors. The second delay cell may include a second inverter circuit that includes third and fourth transistors and may be configured to receive and to delay a second signal. The delay of the second inverter circuit may be based on third and fourth voltages respectively provided to the third and fourth transistors. The delay controller may be configured to provide the first, second, third, and fourth voltages.
    Type: Application
    Filed: April 16, 2014
    Publication date: February 16, 2017
    Applicant: WASHINGTON STATE UNIVERSITY
    Inventors: Deukhyoun HEO, Pawan AGARWAL
  • Publication number: 20150279551
    Abstract: Technologies are generally described for switchable patterned metal shield inductance structures. In some examples, an inductance structure on a substrate may include an inductor and a metal shield, where the metal shield separates and shields the inductor from the substrate. The configuration of the metal shield and the inductor may facilitate reduction in the overall inductance of the inductance structure. In particular, the metal shield may be configured to develop one or more eddy currents in response to an inductor-generated magnetic field. The eddy currents may then result in a magnetic field opposing the inductor-generated magnetic field, which may result in a reduction in the overall magnetic field and the overall inductance of the inductance structure. The metal shield may be switchable between multiple modes, where each mode may be effective to reduce the overall inductance by a different amount.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 1, 2015
    Inventors: Deukhyoun Heo, Pawan Agarwal
  • Patent number: 9071251
    Abstract: In some examples, a circuit is described. The circuit may include a voltage-controlled oscillator that may be configured to generate an output signal. The circuit may also include a control signal generation unit that may be configured to generate a control signal based on the output signal. The control signal generation unit may also be configured to provide the control signal to the voltage-controlled oscillator. The voltage-controlled oscillator and the control signal generation unit may be part of a phase-locked loop (PLL) included in the circuit. The circuit may also include a feed-forward network. The feed-forward network may be configured to provide a portion of the control signal to the voltage-controlled oscillator. The voltage-controlled oscillator may generate the output signal based on the control signal from the control signal generation unit and the portion of the control signal from the feed-forward network.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 30, 2015
    Assignee: WASHINGTON STATE UNIVERSITY
    Inventors: Deukhyoun Heo, Pawan Agarwal
  • Publication number: 20140312942
    Abstract: In some examples, a circuit is described. The circuit may include a voltage-controlled oscillator that may be configured to generate an output signal. The circuit may also include a control signal generation unit that may be configured to generate a control signal based on the output signal. The control signal generation unit may also be configured to provide the control signal to the voltage-controlled oscillator. The voltage-controlled oscillator and the control signal generation unit may be part of a phase-locked loop (PLL) included in the circuit. The circuit may also include a feed-forward network. The feed-forward network may be configured to provide a portion of the control signal to the voltage-controlled oscillator. The voltage-controlled oscillator may generate the output signal based on the control signal from the control signal generation unit and the portion of the control signal from the feed-forward network.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Applicant: WASHINGTON STATE UNIVERSITY
    Inventors: Deukhyoun Heo, Pawan Agarwal
  • Publication number: 20060199873
    Abstract: Disclosed herein is an expanded olefin resin comprising a copolymer base resin and a blowing agent, wherein the copolymer base resin is comprised of about 90 to 99.999 weight percent of an olefin and about 0.001 to 10 weight percent of an ?-? diene, wherein the copolymer base resin has a weight average molecular weight of about 30,000 to 500,000 Daltons, a crystallization temperature in a range from 115° C. to 135° C., and a melt flow rate in a range from 0.1 dg/min to 100 dg/min as determined using ASTM D-1238 at 230° C. and 2.16 kg load.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Inventors: Aspy Mehta, Pawan Agarwal
  • Publication number: 20050090571
    Abstract: Disclosed herein is an expanded olefin resin comprising a copolymer base resin and a blowing agent, wherein the copolymer base resin is comprised of about 90 to 99.999 weight percent of an olefin and about 0.001 to 10 weight percent of an ?-? diene, wherein the copolymer base resin has a weight average molecular weight of about 30,000 to 500,000 Daltons, a crystallization temperature in a range from 115° C. to 135° C., and a melt flow rate in a range from 0.1 dg/min to 100 dg/min as determined using ASTM D-1238 at 230° C. and 2.16 kg load.
    Type: Application
    Filed: October 27, 2003
    Publication date: April 28, 2005
    Inventors: Aspy Mehta, Pawan Agarwal