Patents by Inventor Pei-Ren Jeng

Pei-Ren Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220344490
    Abstract: A system and methods of manufacturing semiconductor devices is described herein. The method includes forming a recess between fins in a substrate and forming a dielectric layer over the fins and in the recess. Once the dielectric layer has been formed, a bottom seed structure is formed over the dielectric layer within the recess and the dielectric layer is exposed along sidewalls of the recess. A dummy gate material is grown from the bottom seed structure in a bottom-up deposition process without growing the dummy gate material from the dielectric layer exposed along sidewalls of the recess.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 27, 2022
    Inventors: Chia-Ao Chang, Pei-Ren Jeng, Chii-Horng Li, Yee-Chia Yeo
  • Patent number: 11482620
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a substrate. A fin is on the substrate. The fin includes silicon germanium. An interfacial layer is over the fin. The interfacial layer has a thickness in a range from greater than 0 nm to about 4 nm. A source/drain region is over the interfacial layer. The source/drain region includes silicon germanium.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yun Chin, Chii-Horng Li, Chien-Wei Lee, Hsueh-Chang Sung, Heng-Wen Ting, Roger Tai, Pei-Ren Jeng, Tzu-Hsiang Hsu, Yen-Ru Lee, Yan-Ting Lin, Davie Liu
  • Publication number: 20220336640
    Abstract: A method includes forming a semiconductor fin protruding higher than a top surface of an isolation region. The semiconductor fin overlaps a semiconductor strip, and the semiconductor strip contacts the isolation region. The method further includes forming a gate stack on a sidewall and a top surface of a first portion of the semiconductor fin, and etching the semiconductor fin and the semiconductor strip to form a trench. The trench has an upper portion in the semiconductor fin and a lower portion in the semiconductor strip. A semiconductor region is grown in the lower portion of the trench. Process gases used for growing the semiconductor region are free from both of n-type dopant-containing gases and p-type dopant-containing gases. A source/drain region is grown in the upper portion of the trench, wherein the source/drain region includes a p-type or an n-type dopant.
    Type: Application
    Filed: June 18, 2021
    Publication date: October 20, 2022
    Inventors: Meng-Ku Chen, Ji-Yin Tsai, Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Yee-Chia Yeo, Chii-Horng Li
  • Patent number: 11476331
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a fin on a substrate. A gate structure is over the fin. A source/drain is in the fin proximate the gate structure. The source/drain includes a bottom layer, a supportive layer over the bottom layer, and a top layer over the supportive layer. The supportive layer has a different property than the bottom layer and the top layer, such as a different material, a different natural lattice constant, a different dopant concentration, and/or a different alloy percent content.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Chi Tai, Chii-Horng Li, Pei-Ren Jeng, Yen-Ru Lee, Yan-Ting Lin, Chih-Yun Chin
  • Publication number: 20220328358
    Abstract: A device is manufactured by providing a semiconductor fin protruding from a major surface of a silicon substrate comprising silicon. A liner and a shallow trench isolation (STI) region are formed adjacent the semiconductor fin. A silicon cap is deposited over the semiconductor fin. The resulting cap consists of crystalline silicon in the portion over the semiconductor fin and consists of amorphous silicon in the portions over the liner and STI region. An HCl etch bake process is performed to remove the portions of amorphous silicon over the liner and the STI region.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsiung Yen, Ta-Chun Ma, Chien-Chang Su, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen
  • Publication number: 20220293773
    Abstract: A method for smoothing a surface of a semiconductor portion is disclosed. In the method, an intentional oxide layer is formed on the surface of the semiconductor portion, a treated layer is formed in the semiconductor portion and inwardly of the intentional oxide layer, and then, the intentional oxide layer and the treated layer are removed to obtain a smoothed surface. The method may also be used for widening a recess in a manufacturing process for a semiconductor structure.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Hsi YANG, Che-Yu LIN, Yi-Fang PAI, Pei-Ren JENG, Chii-Horng LI, Yee-Chia YEO
  • Patent number: 11437497
    Abstract: In an embodiment, a device includes: a substrate; a first semiconductor region extending from the substrate, the first semiconductor region including silicon; a second semiconductor region on the first semiconductor region, the second semiconductor region including silicon germanium, edge portions of the second semiconductor region having a first germanium concentration, a center portion of the second semiconductor region having a second germanium concentration less than the first germanium concentration; a gate stack on the second semiconductor region; and source and drain regions in the second semiconductor region, the source and drain regions being adjacent the gate stack.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ji-Yin Tsai, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen, Yee-Chia Yeo
  • Publication number: 20220238656
    Abstract: A semiconductor device includes an epitaxial straining region formed within a semiconductor substrate, the straining region being positioned adjacent to a gate stack, the gate stack being positioned above a channel. The straining region comprises a defect comprising two crossing dislocations such that a cross-point of the dislocations is closer to a bottom of the straining region than to a top of the straining region. The straining region comprises an element with a smaller lattice constant than a material forming the substrate.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Hsiu-Ting Chen, Yi-Ming Huang, Shih-Chieh Chang, Hsing-Chi Chen, Pei-Ren Jeng
  • Patent number: 11367660
    Abstract: A device is manufactured by providing a semiconductor fin protruding from a major surface of a silicon substrate comprising silicon. A liner and a shallow trench isolation (STI) region are formed adjacent the semiconductor fin. A silicon cap is deposited over the semiconductor fin. The resulting cap consists of crystalline silicon in the portion over the semiconductor fin and consists of amorphous silicon in the portions over the liner and STI region. An HCl etch bake process is performed to remove the portions of amorphous silicon over the liner and the STI region.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 21, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsiung Yen, Ta-Chun Ma, Chien-Chang Su, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen
  • Publication number: 20220181143
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Application
    Filed: February 3, 2022
    Publication date: June 9, 2022
    Inventors: Tsai-Fu HSIAO, Kuang-Yuan HSU, Pei-Ren JENG, Tze-Liang LEE
  • Publication number: 20220157934
    Abstract: A method includes depositing a first dielectric layer in an opening, the first dielectric layer comprising a semiconductor element and a non-semiconductor element. The method further includes depositing a semiconductor layer on the first dielectric layer, the semiconductor layer comprising a first element that is the same as the semiconductor element. The method further includes introducing a second element to the semiconductor layer wherein the second element is the same as the non-semiconductor element. The method further includes applying a thermal annealing process to the semiconductor layer to change the semiconductor layer into a second dielectric layer.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Yen-Chun Huang, Bor Chiuan Hsieh, Pei-Ren Jeng, Tai-Chun Huang, Tze-Liang Lee
  • Publication number: 20220130979
    Abstract: A method of forming a semiconductor device includes depositing a film over a dielectric layer. The dielectric layer is over a first fin, a second fin, and within a trench between the first fin and the second fin. The method further includes etching top portions of the film, performing a treatment on the dielectric layer to remove impurities after etching the top portions of the film, and filling the trench over the remaining portions of the film. The treatment includes bombarding the dielectric layer with radicals.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Chia-Ao Chang, De-Wei Yu, Chii-Horng Li, Yee-Chia Yeo, Hsueh-Chang Sung, Pei-Ren Jeng
  • Patent number: 11302782
    Abstract: A semiconductor device includes an epitaxial straining region formed within a semiconductor substrate, the straining region being positioned adjacent to a gate stack, the gate stack being positioned above a channel. The straining region comprises a defect comprising two crossing dislocations such that a cross-point of the dislocations is closer to a bottom of the straining region than to a top of the straining region. The straining region comprises an element with a smaller lattice constant than a material forming the substrate.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiu-Ting Chen, Yi-Ming Huang, Shih-Chieh Chang, Hsing-Chi Chen, Pei-Ren Jeng
  • Publication number: 20220059655
    Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one ore more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
  • Patent number: 11244822
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsai-Fu Hsiao, Kuang-Yuan Hsu, Pei-Ren Jeng, Tze-Liang Lee
  • Patent number: 11239310
    Abstract: A method includes depositing a first dielectric layer in an opening, the first dielectric layer comprising a semiconductor element and a non-semiconductor element. The method further includes depositing a semiconductor layer on the first dielectric layer, the semiconductor layer comprising a first element that is the same as the semiconductor element. The method further includes introducing a second element to the semiconductor layer wherein the second element is the same as the non-semiconductor element. The method further includes applying a thermal annealing process to the semiconductor layer to change the semiconductor layer into a second dielectric layer.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chun Huang, Bor Chiuan Hsieh, Pei-Ren Jeng, Tai-Chun Huang, Tze-Liang Lee
  • Patent number: 11232988
    Abstract: Methods of rectifying a sidewall profile of a fin-shaped stack structure are provided. An example method includes forming, on a substrate, a first fin-shaped structure and a second fin-shaped structure each including a plurality of channel layers interleaved by a plurality of sacrificial layers; depositing a first silicon liner over the first fin-shaped structure and the second fin-shaped structure; depositing a dielectric layer over the substrate, the first fin-shaped structure and the second fin-shaped structure; etching back the dielectric layer to form an isolation feature between the first fin-shaped structure and the second fin-shaped structure and to remove the first silicon liner over the first fin-shaped structure and the second fin-shaped structure to expose sidewalls of the plurality of channel layers and the plurality of sacrificial layers, and epitaxially depositing a second silicon liner over the exposed sidewalls of the plurality of channel layers and the plurality of sacrificial layers.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: January 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Wen Shen, You-Ting Lin, Jiun-Ming Kuo, Yuan-Ching Peng, Yi-Cheng Li, Pin-Ju Liang, Pei-Ren Jeng
  • Patent number: 11211470
    Abstract: An improved dummy gate and a method of forming the same are disclosed. In an embodiment, the method includes depositing a first material in a trench, the trench being disposed between a first fin and a second fin; etching the first material to expose an upper portion of sidewalls of the trench; and depositing a second material on the first material without the second material being deposited on the exposed upper portion of the sidewalls of the trench.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Ku Chen, Chii-Horng Li, Cheng-Po Chau, Pei-Ren Jeng, Yee-Chia Yeo, Chia-Ao Chang
  • Publication number: 20210375688
    Abstract: Methods of rectifying a sidewall profile of a fin-shaped stack structure are provided. An example method includes forming, on a substrate, a first fin-shaped structure and a second fin-shaped structure each including a plurality of channel layers interleaved by a plurality of sacrificial layers; depositing a first silicon liner over the first fin-shaped structure and the second fin-shaped structure; depositing a dielectric layer over the substrate, the first fin-shaped structure and the second fin-shaped structure; etching back the dielectric layer to form an isolation feature between the first fin-shaped structure and the second fin-shaped structure and to remove the first silicon liner over the first fin-shaped structure and the second fin-shaped structure to expose sidewalls of the plurality of channel layers and the plurality of sacrificial layers, and epitaxially depositing a second silicon liner over the exposed sidewalls of the plurality of channel layers and the plurality of sacrificial layers.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Shu-Wen Shen, You-Ting Lin, Jiun-Ming Kuo, Yuan-Ching Peng, Yi-Cheng Li, Pin-Ju Liang, Pei-Ren Jeng
  • Publication number: 20210366715
    Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate, the substrate including silicon, the first fin including silicon germanium; forming an isolation region around the first fin, an oxide layer being formed on the first fin during formation of the isolation region; removing the oxide layer from the first fin with a hydrogen-based etching process, silicon at a surface of the first fin being terminated with hydrogen after the hydrogen-based etching process; desorbing the hydrogen from the silicon at the surface of the first fin to depassivate the silicon; and exchanging the depassivated silicon at the surface of the first fin with germanium at a subsurface of the first fin.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Ta-Chun Ma, Yi-Cheng Li, Pin-Ju Liang, Cheng-Po Chau, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen, Cheng-Hsiung Yen