Patents by Inventor Per Egedal

Per Egedal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220170442
    Abstract: Provided is controller for a wind turbine including a power controller unit for controlling a power output of an electric generator included in the wind turbine. The power controller unit operates the electric generator according to a speed reference value and a power reference value, the speed reference value and a power reference value being chosen along a linear operating trajectory in a power vs speed graph, the linear operating trajectory including a point corresponding to the nominal power and the nominal generator speed. The power controller unit includes a slider command for selecting the angular position of the linear operating trajectory in the power vs speed graph.
    Type: Application
    Filed: March 16, 2020
    Publication date: June 2, 2022
    Inventors: Per Egedal, Michael Stoettrup
  • Publication number: 20220049680
    Abstract: A method of adapting noise emission configurations of plural wind turbines, the method including: determining total wind turbine related noise levels at plural locations; determining, among the plural locations, a critical location having a most critical, in particular highest, total wind turbine related noise level; if the most critical total wind turbine related noise level is above a noise threshold: reducing the noise emission configuration of a wind turbine having the highest noise to power impact ratio, is provided.
    Type: Application
    Filed: September 10, 2019
    Publication date: February 17, 2022
    Inventors: Per Egedal, Tomas Rosenberg Hansen, Stefan Oerlemans
  • Publication number: 20220034297
    Abstract: Provided is a wind turbine and to a method and a device for controlling aerodynamic properties of a blade of the wind turbine, the blade including a predetermined number of add-on members which are actuated by a corresponding trim actuator to alter the aerodynamic properties of the blade, wherein each trim actuator is configured to hold the add-on member in a predetermined first position and a predetermined second position. The control device is configured to determine a first number of add-on members which are to be held at the predetermined first position, and to determine a second number of add-on members which are to be held at the predetermined second position.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 3, 2022
    Inventors: Per Egedal, Gustav Hoegh
  • Publication number: 20220025860
    Abstract: Provided is a device and a method of damping front and backward movements of a tower of a wind turbine, wherein the wind turbine includes the tower and a rotor, the rotor being mounted at the top of the tower to rotate about a rotational axis in which the front and backward movements of the tower occur, and the rotor has a plurality of blades, wherein each blade has at least one corresponding active add-on member which is actuated by a corresponding actuator to alter aerodynamic properties of the blade. Each add-on member is actuated by the corresponding actuator to alter the aerodynamic properties of the blade in a manner that the rotor is configured to damp the front and backward movements of the tower of the wind turbine.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Thomas Esbensen, Gustav Hoegh
  • Publication number: 20220025853
    Abstract: A method of detecting an adjustment fault related to a wind turbine rotor blade mounted at a wind turbine rotor and including an adaptable flow regulating device, in particular spoiler and/or flap, the method including: estimating a quantity indicative of a change of a driving impact of wind on the wind turbine rotor based on at least two settings of the adaptable flow regulating device; determining another quantity indicative of a desired change of the driving impact on the wind turbine rotor, in order to change a value of a rotor speed to a reference value of the rotor speed; and indicating an adjustment fault based on a comparison of the quantity with the other quantity, is provided.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventor: Per Egedal
  • Publication number: 20220025857
    Abstract: Provided is an arrangement for controlling inflow and outflow of a fluid into and out of an expandable container arranged to change a state of an adaptable flow regulating device installed at a wind turbine rotor blade, the arrangement including: an inflow valve arranged to control fluid inflow into the container; an outflow valve arranged to control fluid outflow out of the container; wherein the inflow valve and the outflow valve are configured to prohibit fluid flow into and/or out of the container in case of safety stop event.
    Type: Application
    Filed: November 4, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Mikkel Aggersbjerg Kristensen
  • Publication number: 20220025861
    Abstract: A method for damping vibration in a wind turbine including aerodynamic devices for influencing the airflow flowing from the leading edge of a rotor blade of the wind turbine to the trailing edge of the rotor blade, each aerodynamic device being movable by an actuator between a first protruded configuration and a second retracted configuration is provided. The method includes measuring vibrations in the wind turbine, if the measured vibrations are greater than a threshold within a predefined frequency band, moving a portion of the aerodynamic devices to the second retracted configuration and continuing to measure vibrations, if the measured vibrations are still greater than a threshold within a frequency band, reducing the pitch angle interval of the blade and continuing to measure vibrations, if the measured vibrations are still greater than a threshold within a frequency band, moving all the aerodynamic devices to the second retracted configuration.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Gustav Hoegh
  • Publication number: 20220025870
    Abstract: Provided is a blade for a wind turbine, the blade including a joint section configured to connect the blade to a hub of the wind turbine; an active add-on member which is actuated by a corresponding trim actuator to alter aerodynamic properties of the blade; and a channel configured to supply a medium from the joint section to the active add-on member. A wind turbine and a method of preventing icing of the blade is also provided.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Gustav Hoegh, Dennis Stachniuk Jensen
  • Publication number: 20220025854
    Abstract: Provided is a method of correcting a measurement value of least one wind characteristic, in particular wind speed and/or wind direction, related to a wind turbine having a rotor with plural rotor blades at least one having an adaptable flow regulating device installed, the method including: measuring a value of the wind characteristic; obtaining state information of the adaptable flow regulating device; and determining a corrected value of the wind characteristic based on the measured value of the wind characteristic and the state information of the adaptable flow regulating device.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Thomas Esbensen, Gustav Hoegh
  • Publication number: 20220025856
    Abstract: Provided is a method of estimating a value of wind speed a wind turbine is subjected to, the wind turbine having a rotor with rotor blades at least one having an adaptable flow regulating device installed, the method including: obtaining values for power output of the wind turbine, rotor speed of the rotor, and pitch angle of the rotor blades; obtaining state information of the adaptable flow regulating device; and estimating the value of the wind speed based on the values for power output, rotor speed, pitch angle and the state information of the adaptable flow regulating device.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Martin Nygaard Kragelund
  • Publication number: 20220025867
    Abstract: Provided is a wind turbine including: at least a rotor blade including an aerodynamic device for influencing the airflow flowing from the leading edge section of the rotor blade to the trailing edge section of the rotor blade, wherein the aerodynamic device is mounted at a surface of the rotor blade, a pressure supply system for providing a pressurized fluid for operating the aerodynamic device between a first protruded configuration and a second retracted configuration, a control unit for controlling the pressure supply system, a monitor unit for monitoring a pressure and/or a flow rate of the pressurized fluid, and configured for: receiving a measured pressure and/or flow rate signal in at least one section of the pressure supply system, deriving an operative status of the aerodynamic device based on the measured pressure and/or flow rate signal.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 27, 2022
    Inventors: Per Egedal, Peder Bay Enevoldsen, Moritz Fiedel, Alejandro Gomez Gonzalez, Gustav Hoegh, Mikkel Aggersbjerg Kristensen
  • Publication number: 20220018336
    Abstract: Provided is a method for detecting the operative status of an aerodynamic device for influencing the airflow which flows from the leading edge of a rotor blade for a wind turbine to the trailing edge of the rotor blade, the aerodynamic device being movable by an actuator between a first protruded configuration and a second retracted configuration. The method includes the steps of measuring a temporal course of an operational value of the wind turbine, comparing the measured temporal course of the operational value with a desired temporal course of an operational value, and deriving an operative status of the aerodynamic device.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 20, 2022
    Inventors: Per Egedal, Peder Bay Enevoldsen, Moritz Fiedel, Alejandro Gomez Gonzalez, Gustav Hoegh, Mikkel Aggersbjerg Kristensen
  • Publication number: 20220018329
    Abstract: A wind turbine including: at least a rotor blade including an aerodynamic device for influencing the airflow flowing from the leading edge section of the rotor blade to the trailing edge section of the rotor blade, wherein the aerodynamic device is mounted at a surface of the rotor blade, an actuator of the aerodynamic device for actuating the aerodynamic device at least between a first protruded configuration and a second retracted configuration, a pressure supply system for operating the actuator by means of a pressurized fluid, an acoustic receiver for measuring an acoustic signal in the pressure supply system, and a diagnostic unit connected to the acoustic receiver and configured for deriving an operative status of the aerodynamic device based on the acoustic signal, is provided.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 20, 2022
    Inventors: Per Egedal, Peder Bay Enevoldsen, Moritz Fiedel, Alejandro Gomez Gonzalez, Gustav Hoegh, Mikkel Aggersbjerg Kristensen
  • Publication number: 20220018334
    Abstract: A method of controlling a wind turbine including a plurality of rotor blades, a first controller for controlling an adaptive flow regulating system having a plurality of individually controllable adaptive flow regulating devices arranged on the rotor blades, and a second controller for controlling a pitch regulating system for regulating a pitch angle of each rotor blade. The method includes (a) determining a diagnostic value indicative of an operational efficiency of the adaptive flow regulating system, (b) determining a first gain value for the first controller and a second gain value for the second controller based on the diagnostic value, (c) applying the first gain value to control signals for the adaptive flow regulating system generated by the first controller, and (d) applying the second gain value to control signals for the pitch regulating system generated by the second controller, is provided.
    Type: Application
    Filed: October 31, 2019
    Publication date: January 20, 2022
    Inventors: Per Egedal, Gustav Hoegh
  • Publication number: 20210363969
    Abstract: Provided is an apparatus and method for cooperative controlling wind turbines of a wind farm, wherein the wind farm includes at least one pair of turbines aligned along a common axis approximately parallel to a current wind direction and having an upstream turbine and a downstream turbine. The method includes the steps of: a) providing a data driven model trained with a machine learning method and stored in a database, b) determining a decision parameter for controlling at least one of the upstream turbine and the downstream turbine by feeding the data driven model with the current power production of the upstream turbine which returns a prediction value indicating whether the downstream turbine will be affected by wake, and/or the temporal evolvement of the current power production of the upstream turbine; c) based on the decision parameter, determining control parameters for the upstream turbine and/or the downstream turbine.
    Type: Application
    Filed: January 16, 2019
    Publication date: November 25, 2021
    Inventors: Per Egedal, Peder Bay Enevoldsen, Alexander Hentschel, Markus Kaiser, Clemens Otte, Volkmar Sterzing, Steffen Udluft, Marc Christian Weber
  • Patent number: 11181099
    Abstract: Provided is a method of determining an inclination angle of a wind turbine tower at which a nacelle is mounted, the method including measuring plural acceleration values of an acceleration of the nacelle in a predetermined direction relative to the nacelle for plural yawing positions of the nacelle; deriving the inclination angle based on the plural acceleration values.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 23, 2021
    Inventor: Per Egedal
  • Patent number: 11063540
    Abstract: Provided is a method of controlling a permanent magnet generator, the method including: measuring mechanical noise of the generator; deriving two quantities indicative of an amplitude and a phase of an undesired harmonic of the measured noise; deriving, based on the quantities, a current to be injected in stator coils of the generator such as to reduce the undesired harmonic.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: July 13, 2021
    Inventors: Heng Deng, Per Egedal, Ge Xie
  • Publication number: 20210207580
    Abstract: Provided is a wind park, a wind park controller, and a method for controlling a first wind turbine of a plurality of wind turbines of a wind park, wherein a second wind turbine of the plurality of wind turbines can be affected by a wake region caused by the first wind turbine which is positioned upstream of the second wind turbine. A current yaw state is determined and is selected from at least one of: a) an actual rotor yaw misalignment angle of the first wind turbine, wherein the actual rotor yaw misalignment angle is an angle between a rotating axis of a rotor of the first wind turbine and a current wind direction at the rotating axis upstream of the first wind turbine, b) an identifier representing whether the actual rotor yaw misalignment angle is either in a range of positive yaw misalignment angles or of negative yaw misalignment angles.
    Type: Application
    Filed: September 6, 2019
    Publication date: July 8, 2021
    Inventors: Per Egedal, Pieter M. O. Gebraad
  • Patent number: 10934997
    Abstract: Provided is a method for damping a side-side oscillation of a tower of a wind turbine having a generator connected to a converter, the method including: measuring an acceleration value of the tower; determining, based on the acceleration value, at least one frequency value of at least one tower oscillation mode, including a second tower oscillation mode; controlling the converter of the wind turbine based at least on the acceleration value and the frequency value.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 2, 2021
    Assignee: SIEMENS GAMESA RENEWABLE ENERGY A/S
    Inventor: Per Egedal
  • Publication number: 20210048003
    Abstract: It is described a method for determining a characteristic of air flow close to a surface of a rotating blade of a wind turbine, the method including: measuring at least one value of the temperature of air close to the surface of the blade; and deriving the characteristic of the air flow based on the temperature value.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 18, 2021
    Inventors: Per Egedal, Peder Bay Enevoldsen, Moritz Fiedel, Alejandro Gomez Gonzalez