Patents by Inventor Perry M. Wyatt

Perry M. Wyatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120558
    Abstract: A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 11, 2024
    Inventors: Zhenli Zhang, Zhihong Jin, Perry M. Wyatt
  • Patent number: 11848426
    Abstract: A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: December 19, 2023
    Assignee: CPS Technology Holdings LLC
    Inventors: Zhenli Zhang, Zhihong Jin, Perry M. Wyatt
  • Patent number: 11731530
    Abstract: A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery include a first battery chemistry, and a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a first switch, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system further includes a variable voltage alternator that outputs a first voltage during regenerative braking to charge the second battery and a second voltage otherwise, in which the first voltage is higher than the second voltage.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: August 22, 2023
    Assignee: CPS Technology Holdings LLC
    Inventors: Perry M. Wyatt, Daniel B. Le, Ryan S. Mascarenhas, Brian C. Sisk
  • Publication number: 20230108240
    Abstract: One embodiment of the present disclose describes systems and methods responsible for reducing errors in a battery model used in the operation of a battery control system. The battery control system may operate based on a modeled response of the battery derived from the battery model. If the battery model is not calibrated/validated, errors in the battery model may propagate through the modeled response of the battery to the operation of the battery control system. A calibration current pulse may result in a different measured response of the battery than the modeled response of the battery to the same calibration current pulse. A validation technique, which uses a difference between the modeled response and the measured response of the battery to the calibration current pulse as a method to calibrate the battery model, may protect the battery control system from the contribution of errors from an uncalibrated battery model.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Steven G. Rinaldo, Zhihong Jin, Perry M. Wyatt
  • Publication number: 20230040026
    Abstract: A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
    Type: Application
    Filed: October 3, 2022
    Publication date: February 9, 2023
    Inventors: Zhenli Zhang, Zhihong Jin, Perry M. Wyatt
  • Publication number: 20230006308
    Abstract: A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery include a first battery chemistry, and a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a first switch, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system further includes a variable voltage alternator that outputs a first voltage during regenerative braking to charge the second battery and a second voltage otherwise, in which the first voltage is higher than the second voltage.
    Type: Application
    Filed: September 2, 2022
    Publication date: January 5, 2023
    Inventors: Perry M. Wyatt, Daniel B. Le, Ryan S. Mascarenhas, Brian C. Sisk
  • Patent number: 11527780
    Abstract: One embodiment of the present disclose describes systems and methods responsible for reducing errors in a battery model used in the operation of a battery control system. The battery control system may operate based on a modeled response of the battery derived from the battery model. If the battery model is not calibrated/validated, errors in the battery model may propagate through the modeled response of the battery to the operation of the battery control system. A calibration current pulse may result in a different measured response of the battery than the modeled response of the battery to the same calibration current pulse. A validation technique, which uses a difference between the modeled response and the measured response of the battery to the calibration current pulse as a method to calibrate the battery model, may protect the battery control system from the contribution of errors from an uncalibrated battery model.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: December 13, 2022
    Assignee: CPS Technology Services LLC
    Inventors: Steven G. Rinaldo, Zhihong Jin, Perry M. Wyatt
  • Patent number: 11462774
    Abstract: A battery system includes a lithium ion battery configured to couple to an electrical system, and a battery management system configured to electrically couple to the lithium ion battery and to control one or more recharge parameters of the lithium ion battery. The battery management system is programmed with an electrochemical model, and the battery management system is configured to monitor parameters of the lithium ion battery, and to control the one or more recharge parameters of the lithium ion battery based on the electrochemical model and the one or more monitored parameters. The electrochemical model determines lithium plating reaction kinetics at an anode of the lithium ion battery, determines a quantity of plated lithium at the anode of the lithium ion battery, or both, and indicates a relationship between the one or more monitored parameters and the lithium plating reaction kinetics, the quantity of plated lithium, or both.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: October 4, 2022
    Assignee: CPS Technology Holdings LLC
    Inventors: Zhenli Zhang, Zhihong H. Jin, Perry M. Wyatt
  • Patent number: 11437686
    Abstract: An automotive battery module having dual voltage is disclosed, including a housing and a plurality of battery cells connected to form battery cell blocks disposed in the housing. A battery control unit is provided disposed in the housing and is configured to control operation of a battery system. The battery system includes at least one switching device operably connected to a first battery cell block in a first connection arrangement. The first battery cell block is configured to deliver a first voltage. The switching device is also operably connected to a second battery cell block in a second connection arrangement. The second battery cell block is configured to deliver a second voltage. A plurality of terminals are provided on the housing and electrically coupled to the battery control unit and plurality of battery cells, providing an external electrical connection to deliver the first voltage and the second voltage.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 6, 2022
    Assignee: CPS Technology Holdings LLC
    Inventors: Perry M. Wyatt, Daniel B. Le, Ryan S. Mascarenhas, Brian C. Sisk
  • Publication number: 20210384577
    Abstract: A lithium ion battery module includes a housing with dimensions that conform to overall dimensions for a standard lead acid battery. The lithium ion battery module also includes a plurality of lithium ion battery cells arranged in a stack within the housing and a heat sink outer wall feature of the housing. The heat sink outer wall feature substantially extends in at least one direction to an outermost dimension of the standard lead acid battery.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Perry M. Wyatt, Thanh T. Nguyen
  • Patent number: 11190026
    Abstract: A 12 volt automotive battery system includes a first battery coupled to an electrical system, and the first battery includes a first battery chemistry. Further, the 12 volt automotive battery system includes a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a bi-stable relay. The second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. Additionally, the bi-stable relay couples the second battery to the electrical system during regenerative braking to enable the second battery to capture a majority of the power generated during regenerative braking. Furthermore, the bi-stable relay maintains a coupling of the second battery to the electrical system when the vehicle transitions from a key-on position to a key-off position.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 30, 2021
    Assignee: CPS Technology Holdings LLC
    Inventors: Daniel B. Le, Perry M. Wyatt
  • Publication number: 20210309111
    Abstract: Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: Zhihong H. Jin, Brian C. Sisk, Kem M. Obasih, Mark R. Johnson, Perry M. Wyatt, Timur L. Aliyev, Zhenli Zhang
  • Patent number: 11128005
    Abstract: A lithium ion battery module includes a housing with dimensions that conform to overall dimensions for a standard lead acid battery. The lithium ion battery module also includes a plurality of lithium ion battery cells arranged in a stack within the housing and a heat sink outer wall feature of the housing. The heat sink outer wall feature substantially extends in at least one direction to an outermost dimension of the standard lead acid battery.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: September 21, 2021
    Assignee: CPS Technology Holdings LLC
    Inventors: Perry M. Wyatt, Thanh T. Nguyen
  • Publication number: 20210280920
    Abstract: One embodiment of the present disclose describes systems and methods responsible for reducing errors in a battery model used in the operation of a battery control system. The battery control system may operate based on a modeled response of the battery derived from the battery model. If the battery model is not calibrated/validated, errors in the battery model may propagate through the modeled response of the battery to the operation of the battery control system. A calibration current pulse may result in a different measured response of the battery than the modeled response of the battery to the same calibration current pulse. A validation technique, which uses a difference between the modeled response and the measured response of the battery to the calibration current pulse as a method to calibrate the battery model, may protect the battery control system from the contribution of errors from an uncalibrated battery model.
    Type: Application
    Filed: October 12, 2017
    Publication date: September 9, 2021
    Inventors: Steven G. Rinaldo, Zhilhong H. Jin, Perry M. Wyatt
  • Patent number: 11040624
    Abstract: Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: June 22, 2021
    Assignee: CPS Technology Holdings LLC
    Inventors: Zhihong H. Jin, Brian C. Sisk, Kem M. Obasih, Mark R. Johnson, Perry M. Wyatt, Timur L. Aliyev, Zhenli Zhang
  • Publication number: 20210170881
    Abstract: Embodiments describe a battery system that includes a first battery module coupled to a regenerative braking system and a control module that controls operation of the battery system by: determining a predicted driving pattern over a prediction horizon using a driving pattern recognition model based in part on a battery current and a previous driving pattern; determining a predicted battery resistance of the first battery module over the prediction horizon using a recursive battery model based in part on the predicted driving pattern, the battery current, a present bus voltage, and a previous bus voltage; determining a target trajectory of a battery temperature of the first battery module over a control horizon using an objective function; and controlling magnitude and duration of electrical power supplied from the regenerative such that a predicted trajectory of the battery temperature is guided toward the target trajectory of the battery temperature during the control horizon.
    Type: Application
    Filed: October 15, 2018
    Publication date: June 10, 2021
    Inventors: Zhihong H. Jin, Brian C. Sisk, Kem M. Obasih, Mark R. Johnson, Perry M. Wyatt, Timur L. Aliyev, Zhenli Zhang
  • Patent number: 10766368
    Abstract: An energy storage system for supporting dual electrical functions of a vehicle includes an energy storage unit having a plurality of energy storage modules connected in series, a plurality of sensing units for sensing state of charges of the plurality of energy storage modules, and a pair of primary voltage terminals. The series connected plurality of energy storage modules is connectable across the pair of primary voltage terminals during a key-on state of the vehicle to supply energy storage power at a first voltage level to support primary electrical functions of the vehicle. The energy storage system is further configured to select a subset of the plurality of energy storage modules during a key-off state of the vehicle to connect across a pair of secondary voltage terminals using a switch network to supply energy storage power at a second voltage level.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: September 8, 2020
    Assignee: CPS TECHNOLOGY HOLDINGS LLC
    Inventors: Junwei Jiang, Patrick T. Hurley, Perry M. Wyatt, Thomas M. Watson
  • Patent number: 10661663
    Abstract: A battery system includes a battery module, a thermal management system, and a battery system controller. The controller is configured to receive data indicative of first operational conditions of the battery module and of second operational conditions of the thermal management system, determine a desired change to the first operational conditions of the battery module by determining an amount of power available to the thermal management system and to the battery module from one or more power sources, and to enable, to effect the desired change to the first operational conditions, the one or more power sources to provide a first quantity of power to the thermal management system and a second quantity of power to the battery module, and the thermal management system to heat or to cool the battery module to a calculated extent.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 26, 2020
    Assignee: CPS Technology Holdings, LLC
    Inventors: Zhenli Zhang, Zhihong H. Jin, Perry M. Wyatt
  • Publication number: 20200035978
    Abstract: An automotive battery module having dual voltage is disclosed, including a housing and a plurality of battery cells connected to form battery cell blocks disposed in the housing. A battery control unit is provided disposed in the housing and is configured to control operation of a battery system. The battery system includes at least one switching device operably connected to a first battery cell block in a first connection arrangement. The first battery cell block is configured to deliver a first voltage. The switching device is also operably connected to a second battery cell block in a second connection arrangement. The second battery cell block is configured to deliver a second voltage. A plurality of terminals are provided on the housing and electrically coupled to the battery control unit and plurality of battery cells, providing an external electrical connection to deliver the first voltage and the second voltage.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Perry M. Wyatt, Daniel B. Le, Ryan S. Mascarenhas, Brian C. Sisk
  • Patent number: D980160
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: March 7, 2023
    Assignee: CPS Technology Holdings LLC
    Inventors: Jason D. Fuhr, Arunraj Varatharajah, Rengaraj Balakrishnan, Tyler Anthony Thiel, Jason David Searl, Kathryn Marie Ciurlik, Christopher M. Bonin, Perry M. Wyatt