Patents by Inventor Petar R. Dvornic

Petar R. Dvornic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030069370
    Abstract: Hyperbranched polymers are prepared by a process in which a monomer having the form Ax is reacted with another monomer of the form By, where A and B are functional groups that do not react with themselves, but do react with each other. The process allows synthesis of hyperbranched polymers having a single type of terminal functional group from comonomers, each of which has a single type of functional group. The invention allows greater flexibility in the preparation of a larger variety of different hyperbranched polymers and enables hyperbranched polymers to be prepared at a lower cost as compared with conventional processes using monomers having two types of functional groups that react during polymerization.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 10, 2003
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak, Paul L. Parham
  • Patent number: 6534600
    Abstract: Hyperbranched polymers are prepared by a process in which a monomer having the form Ax is reacted with another monomer of the form By, where A and B are functional groups that do not react with themselves, but do react with each other. The process allows synthesis of hyperbranched polymers having a single type of terminal functional group from comonomers, each of which has a single type of functional group. The invention allows greater flexibility in the preparation of a larger variety of different hyperbranched polymers and enables hyperbranched polymers to be prepared at a lower cost as compared with conventional processes using monomers having two types of functional groups that react during polymerization.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Michigan Molecular Institute
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak, Paul L. Parham
  • Publication number: 20030018130
    Abstract: A curable polymer composition capable of achieving rapid curing, reduced viscosity, high solids content, and a very low or zero volatile organic compound content includes a hyperbranched polymer having functional groups of a first type and a polymer having functional groups of a second type, wherein the functional groups of the second type are reactive with the functional groups of the first type under at least certain conditions. The composition can be cured to form a cross-linked nano-domained network comprising covalently bonded nanoscopic, hyperbranched domains which may be of the same or different chemical composition than the rest of the network. The cured compositions may exhibit high thermal stability, mechanical strength and toughness.
    Type: Application
    Filed: September 16, 2002
    Publication date: January 23, 2003
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak
  • Publication number: 20030004293
    Abstract: A curable polymer composition capable of achieving rapid curing, reduced viscosity, high solids content, and a very low or zero volatile organic compound content includes a hyperbranched polymer having functional groups of a first type and a polymer having functional groups of a second type, wherein the functional groups of the second type are reactive with the functional groups of the first type under at least certain conditions. The composition can be cured to form a cross-linked nano-domained network comprising covalently bonded nanoscopic, hyperbranched domains which may be of the same or different chemical composition than the rest of the network. The cured compositions may exhibit high thermal stability, mechanical strength and toughness.
    Type: Application
    Filed: June 25, 2001
    Publication date: January 2, 2003
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak
  • Publication number: 20020192843
    Abstract: Molecular chemical and/or biological sensors that exhibit a very high density of sensing functionality and which are applicable to a wide variety of different analytes, and enable rapid, convenient and economical detection of analytes are prepared by reacting a dendritic polymer with a diacetylene reagent wherein the diacetylene functional groups are subsequently intramolecularly polymerized to form segments having alternating conjugated double and triple bonds. Sensory groups that can bind with an analyte are bonded to the acetylene monomer units to form molecular sensors that produce observable and measurable color changes when an analyte binds with the sensory groups.
    Type: Application
    Filed: February 6, 2002
    Publication date: December 19, 2002
    Inventors: Steven N. Kaganove, Petar R. Dvornic
  • Publication number: 20020161113
    Abstract: Hyperbranched polymers are prepared by a process in which a monomer having the form Ax is reacted with another monomer of the form By, where A and B are functional groups that do not react with themselves, but do react with each other. The process allows synthesis of hyperbranched polymers having a single type of terminal functional group from comonomers, each of which has a single type of functional group. The invention allows greater flexibility in the preparation of a larger variety of different hyperbranched polymers and enables hyperbranched polymers to be prepared at a lower cost as compared with conventional processes using monomers having two types of functional groups that react during polymerization.
    Type: Application
    Filed: March 26, 2001
    Publication date: October 31, 2002
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak, Paul L. Parham
  • Patent number: 6384172
    Abstract: Hyperbranched polycarbosilanes, polycarbosiloxanes, polycarbosilazenes and copolymers thereof are prepared by reacting a difunctional or polyfunctional monomer having functional groups of one type (A) without any other functional groups capable of reacting significantly during polymerization, and a difunctional or polyfunctional monomer having functional groups of another type (B) without any other functional groups capable of reacting significantly during polymerization, wherein each A-functional group is reacted with a B-functional group, and wherein at least one of the monomers has a functionality of at least three. The process enables hyperbranched polycarbosilanes, polycarbosiloxanes, polycarbosilazenes and copolymers thereof to be prepared at a lower cost than with conventional synthesis processes, and provides greater flexibility in the preparation of a larger variety of different types of hyperbranched polycarbosilanes, polycarbosiloxanes, polycarbosilazenes and copolymers thereof.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: May 7, 2002
    Assignee: Michigan Molecular Institute
    Inventors: Petar R. Dvornic, Jin Hu, Dale J. Meier, Robert M. Nowak
  • Patent number: 6077500
    Abstract: Higher generation radially layered copolymeric dendrimers having a hydrophilic poly(amidoamine) or a hydrophilic poly(propyleneimine) interior and a hydrophobic organosilicon exterior are prepared by first reacting a hydrophilic dendrimer having --NH.sub.2 surface groups with an organosilicon compound, and then hydrosilating the resulting copolymeric dendrimer with another organosilicon compound in the presence of a noble metal catalyst. In an alternate embodiment, the radially layered copolymeric dendrimers are prepared by reacting a hydrophilic dendrimer having --NH.sub.2 surface groups directly with an organosilicon dendron or organosilicon hyperbranched polymer.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: June 20, 2000
    Assignees: Dow Corning Corporation, Dendritech, Incorporated
    Inventors: Petar R. Dvornic, Agnes M. deLeuze-Jallouli, Michael James Owen, Susan Victoria Perz
  • Patent number: 5938934
    Abstract: Dendritic polymer based networks consisting of well-defined hydrophilic and oleophilic (i.e., hydrophobic) domains, are capable of performing as nanoscopic sponges for electrophilic guest moieties such as (i) inorganic and organic cations; (ii) charged or polarized molecules containing electrophilic constituent atoms or atomic groups; and (iii) other electrophilic organic, inorganic, or organometallic species. As a result of such performance, the networks yield novel nanoscopic organo-inorganic composites which contain organosilicon units as an integral part of their covalently bonded matrix.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: August 17, 1999
    Assignees: Dow Corning Corporation, Dendritech Inc.
    Inventors: Lajos Balogh, Agnes M. deLeuze-Jallouli, Petar R. Dvornic, Michael J. Owen, Susan Victoria Perz, Ralph Spindler
  • Patent number: 5902863
    Abstract: Dendrimer-based networks are prepared from copolydendrimer precursors having well defined hydrophilic polyamidoamine (PAMAM) or polypropyleneimine (PPI) interiors, and organosilicon outer layers ending with .tbd.Si--OCH.sub.3 surface groups. These networks have precisely controllable size, shape, and spatial distribution, of nanoscopic hydrophilic and hydrophobic domains. Such constructs are prepared by crosslinking one type of copolydendrimer precursor, or by crosslinking mixtures of different copolydendrimers having different generations of PAMAM or PPI dendrimers in the interior, surrounded by different organosilicon exteriors. Crosslinking can be controlled by adding difunctional, trifunctional, or polyfunctional low molecular weight or oligomeric crosslinking agents; or by exposing a copolydendrimer having hydrolyzable surface groups to atmospheric moisture. Elastomeric dendrimer-based networks have low glass temperatures of -15.degree. C.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: May 11, 1999
    Assignees: Dow Corning Corporation, Michigan Molecular Institute
    Inventors: Petar R. Dvornic, Agnes M. deLeuze-Jallouli, Michael James Owen, Susan Victoria Perz
  • Patent number: 5739218
    Abstract: Radially layered copoly-dendrimers having unusual surface properties and novel applications have been synthesized and characterized. These are the first copolymeric dendrimers composed of a hydrophilic poly(amidoamine) (PAMAM) interior with hydrophobic organosilicon surfaces. These dendrimers have been prepared by surface modifications of an ethylene diamine core PAMAM dendrimer with (3-acryloxypropyl)methyldimethoxysilane, (3-acryloxypropyl)bis(vinyldimethylsiloxy)methylsilane, (3-acryloxypropyl)tris(trimethylsiloxy)silane, chloromethyltrimethylsilane, and chloromethyldimethylvinylsilane, to varying degrees of surface coverage. The obtained products were characterized by .sup.1 H, .sup.13 C, and .sup.29 Si NMR, and by DSC and TGA. The dendrimers with less completely covered organosilicon surfaces are water soluble, and have considerable surface activity, the best of which lowered the surface tension of water to less than 30 mN/m.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: April 14, 1998
    Assignees: Dow Corning Corporation, Michigan Molecular Institute
    Inventors: Petar R. Dvornic, Agnes M. deLeuze-Jallouli, Douglas Swanson, Michael James Owen, Susan Victoria Perz