Patents by Inventor Peter Banks

Peter Banks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120251237
    Abstract: A load-limiting device is formed from a length of wire with a coil at each end defining eyes by which the device can be connected into a system adapted to be loaded in tension. The coils are of different diameter and the larger diameter coil is adapted to unwind by plastic deformation of the wire when the device is subject to a tensile load of a predetermined magnitude. The use of such devices in a system for deploying a vehicle arresting device across a roadway is also described.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: QINETIQ LIMITED
    Inventors: Philip John Dandy, David Peter Banks-Fear
  • Publication number: 20070259511
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 4, 2006
    Publication date: November 8, 2007
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Craig Lowrie, Peter Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20070105355
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: September 27, 2006
    Publication date: May 10, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Adrian Murrell, Peter Banks, Matthew Dobson, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20060197016
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 7, 2006
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Craig Lowrie, Peter Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20050211923
    Abstract: The invention relates to methods of controlling the effect of ions of an ionisable source gas that can react with interior surfaces of an arc chamber, by introducing ions of a displacement gas into the arc chamber, where the displacement gas ions are more chemically reactive with the material of the interior surfaces than the ions of the source gas. The source gas ions may typically be oxygen ions and the displacement gas ions are then typically fluorine ions where the interior surfaces comprise tungsten. The fluorine ions may, by way of example, be sourced from fluorine, silicon tetrafluoride or nitrogen trifluoride.
    Type: Application
    Filed: June 1, 2004
    Publication date: September 29, 2005
    Inventor: Peter Banks
  • Publication number: 20040157220
    Abstract: A method and apparatus are provided for identifying a biological sample obtained during either paternity screening, genetic screening, prenatal diagnosis, presymptomatic diagnosis, diagnosis to detect the presence of a target microorganism carrier detection analysis, forensic chemical analysis, or diagnosis of a subject to determine whether a subject is afflicted with a particular disease or disorder, or is at risk of developing a particular disorder, wherein the result obtained from the analysis is associated with the unique DNA fingerprint biological barcode of the genotype of the subject being analyzed. The methods and apparatus of the invention have application in the fields of diagnostic medicine, disease diagnosis in animals and plants, identification of genetically inherited diseases in humans, family relationship analysis, forensic analysis, and microbial typing.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 12, 2004
    Inventors: Purnima Kurnool, Betty Wu, Peter Banks