Patents by Inventor Peter Biberbach

Peter Biberbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8263290
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterized by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: September 11, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Publication number: 20110223523
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 15, 2011
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Patent number: 7976989
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 12, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Patent number: 7776781
    Abstract: The invention relates to a carbon-supported PtRu anode catalyst for direct methanol fuel cells (DMFC) which has a platinum/ruthenium content in the range from 80 to 98 wt. %, preferably in the range from 85 to 98 wt. %, particularly preferably in the range from 85 to 95 wt. % (based on the total weight of the catalyst), on a carbon-based electrically conductive support material and has a mean particle size of less than 3 nm. The catalyst is prepared using a carbon black support material having a specific surface area (measured by the BET method) in the range from 1000 to 2000 m2/g by means of a reduction process using chemical reducing agents with addition of organic acids. Electrodes and membrane-electrode units containing the catalyst according to the invention having a high precious metal loading have an electrode layer thickness of less than 80 ?m at a PtRu loading per unit area of the electrode of from 6 to 12 mg of PtRu/cm2 and lead to improved electric power in direct methanol fuel cells.
    Type: Grant
    Filed: August 13, 2005
    Date of Patent: August 17, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Peter Biberbach
  • Publication number: 20080214389
    Abstract: The invention relates to a carbon-supported PtRu anode catalyst for direct methanol fuel cells (DMFC) which has a platinum/ruthenium content in the range from 80 to 98 wt. %, preferably in the range from 85 to 98 wt. %, particularly preferably in the range from 85 to 95 wt. % (based on the total weight of the catalyst), on a carbon-based electrically conductive support material and has a mean particle size of less than 3 nm. The catalyst is prepared using a carbon black support material having a specific surface area (measured by the BET method) in the range from 1000 to 2000 m2/g by means of a reduction process using chemical reducing agents with addition of organic acids. Electrodes and membrane-electrode units containing the catalyst according to the invention having a high precious metal loading have an electrode layer thickness of less than 80 ?m at a PtRu loading per unit area of the electrode of from 6 to 12 mg of PtRu/cm and lead to improved electric power in direct methanol fuel cells.
    Type: Application
    Filed: August 13, 2005
    Publication date: September 4, 2008
    Inventors: Marco Lopez, Peter Biberbach
  • Publication number: 20070292744
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Application
    Filed: October 29, 2004
    Publication date: December 20, 2007
    Applicant: UMICORE AG &, ANDREAS
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Patent number: 7288501
    Abstract: Process and apparatus for the thermal treatment of pulverulent substances, in which the pulverulent substance is dispersed in a carrier gas and is passed in a continuous manner through a heated reactor where it is thermally treated and is then quenched by a cooling medium and is collected in a gas-solids separating unit.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: October 30, 2007
    Assignee: Umicore AG & Co., KG
    Inventors: Emmanuel Auer, Peter Biberbach, Michael Gross, Andreas Gutsch, Markus Pridöhl, Karsten Ruth, Edwin Staab
  • Patent number: 7109145
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 19, 2006
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl-Anton Starz
  • Publication number: 20050101481
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Application
    Filed: December 10, 2004
    Publication date: May 12, 2005
    Applicant: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl Starz
  • Patent number: 6861387
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 1, 2005
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl Anton Starz
  • Patent number: 6814777
    Abstract: The invention provides platinum or platinum alloy powders for use in fuel cells and for chemical reactions. The powders are characterized by a high surface area and, at the same time, low chlorine contents. The powders are prepared by forming a melt which contains, as starting substances, a low melting mixture of alkali metal nitrates, a chlorine-free platinum compound and optionally chlorine-free compounds of alloying elements, the melt is then heated to a reaction temperature at which the platinum compound and the compounds of alloying elements thermally decompose to give oxides, the melt is then cooled and dissolved in water and the oxides or mixed oxides formed are converted into platinum or platinum alloy powders by subsequent reduction. Binary or ternary eutectic mixtures from the LiNO3—KNO3—NaNO3 system are suitable as a low melting mixture of nitrates of the alkali metals. Hexahydroxoplatinic-(IV)-acid is preferably used as a chlorine-free platinum compound.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: November 9, 2004
    Assignee: Umicore AG & Co. KG
    Inventor: Peter Biberbach
  • Patent number: 6797667
    Abstract: The invention provides a process for preparing a platinum-ruthenium catalyst and the catalyst prepared therewith. The catalyst can be supported on a support material in powder form or may also be unsupported. To prepare the supported catalyst, the support material is suspended in water and the suspension is heated to at most the boiling point. While keeping the temperature of the suspension the same, solutions of hexachloroplatinic acid and ruthenium chloride are then added to the suspension, then the pH of the suspension is increased to a value between 6.5 and 10 by adding an alkaline solution and the noble metals are thus precipitated onto the support material. Afterwards, one or more organic carboxylic acids and/or their salts are added to the suspension and the catalyst is chemically reduced, washed, dried and optionally subsequently calcined under an inert or reducing atmosphere at a temperature between 300 und 1000° C.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: September 28, 2004
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl-Anton Starz, Ralph McIntosh
  • Publication number: 20030079566
    Abstract: The invention provides platinum or platinum alloy powders for use in fuel cells and for chemical reactions. The powders are characterized by a high surface area and, at the same time, low chlorine contents. The powders are prepared by forming a melt which contains, as starting substances, a low melting mixture of alkali metal nitrates, a chlorine-free platinum compound and optionally chlorine-free compounds of alloying elements, the melt is then heated to a reaction temperature at which the platinum compound and the compounds of alloying elements thermally decompose to give oxides, the melt is then cooled and dissolved in water and the oxides or mixed oxides formed are converted into platinum or platinum alloy powders by subsequent reduction. Binary or ternary eutectic mixtures from the LiNO3—KNO3—NaNO3 system are suitable as a low melting mixture of nitrates of the alkali metals. Hexahydroxoplatinic-(IV)-acid is preferably used as a chlorine-free platinum compound.
    Type: Application
    Filed: July 31, 2002
    Publication date: May 1, 2003
    Applicant: OMG AG & CO. KG
    Inventor: Peter Biberbach
  • Publication number: 20030045425
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Application
    Filed: April 30, 2002
    Publication date: March 6, 2003
    Applicant: OMG AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl Anton Starz
  • Publication number: 20030017378
    Abstract: The invention provides a process for preparing a platinum-ruthenium catalyst and the catalyst prepared therewith. The catalyst can be supported on a support material in powder form or may also be unsupported. To prepare the supported catalyst, the support material is suspended in water and the suspension is heated to at most the boiling point. While keeping the temperature of the suspension the same, solutions of hexachloroplatinic acid and ruthenium chloride are then added to the suspension, then the pH of the suspension is increased to a value between 6.5 and 10 by adding an alkaline solution and the noble metals are thus precipitated onto the support material. Afterwards, one or more organic carboxylic acids and/or their salts are added to the suspension and the catalyst is chemically reduced, washed, dried and optionally subsequently calcined under an inert or reducing atmosphere at a temperature between 300 und 1000° C.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 23, 2003
    Applicant: OMG AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl-Anton Starz, Ralph McIntosh
  • Publication number: 20020160909
    Abstract: Process and apparatus for the thermal treatment of pulverulent substances, in which the pulverulent substance is dispersed in a carrier gas and is passed in a continuous manner through a heated reactor where it is thermally treated and is then quenched by a cooling medium and is collected in a gas-solids separating unit.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 31, 2002
    Inventors: Emmanuel Auer, Peter Biberbach, Michael Gross, Andreas Gutsch, Markus Pridohl, Karsten Ruth, Edwin Staab
  • Patent number: 4610437
    Abstract: There is provided a crucible for containing salt baths for the boriding of steels which has a high service life made of a steel which consists of (or consists essentially of) 0.05-0.8% carbon, 0.8-2.5% silicon, 0.1-2.0% manganese, 0-1.5% aluminum, 6-30% chromium, 4-39% nickel and the balance iron.
    Type: Grant
    Filed: July 12, 1984
    Date of Patent: September 9, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Ulrich Baudis, Peter Biberbach, Rainer Engelmann
  • Patent number: 4536224
    Abstract: There is described a salt bath based on an alkali and/or alkaline earth metal halide with which there can be produced without the use of current adherent and wear resistant boride coatings on metallic workpieces. This bath contains gaseous boron monofluoride or a compound from which there is formed intermediately boron monofluoride. Advantageous there is used a salt bath containing 30-60% BaCl.sub.2, 10-25% NaCl, 1-20% boron oxide or borate, 10-30% NaF, and 1-15% B.sub.4 C.
    Type: Grant
    Filed: July 12, 1984
    Date of Patent: August 20, 1985
    Assignee: Degussa Aktiengesellschaft
    Inventors: Hans-Hermann Beyer, Ulrich Baudis, Peter Biberbach, Wolfgang Weber
  • Patent number: 4509993
    Abstract: It is known to regenerate salt baths for nitriding parts of iron and steel with polymers of organic materials, which polymers, however, could not be used in carburizing salt baths since with them there only are formed slight amounts of carburizing active cyanide, the baths foam, and carbon residues are formed. An excellent regeneration agent for carburizing salt baths is obtained by using polymeric organic compounds of the overall composition [C.sub.6 H.sub.x N.sub.y ].sub.z where x is 3 to 5, y is 5 to 8, and z is 10 to 10,000. These compounds are obtained by reacting formaldehyde with cyanamide and/or dicyandiamide and/or melamine and pyrolytically decomposing the reaction product at 300.degree. to 600.degree. C.
    Type: Grant
    Filed: December 29, 1983
    Date of Patent: April 9, 1985
    Assignee: Degussa Aktiengesellschaft
    Inventors: Hans-Hermann Beyer, Ulrich Baudis, Peter Biberbach
  • Patent number: 4441930
    Abstract: For removing and dissolving sand mold residues from cast parts, particularly sand mold residues containing zirconium oxide and titanium oxide, there have previously been used mechanical and electrochemical processes in salt melts. However, these processes are very expensive, attack the surface of the cast pieces or fail to work with sand mold constituents which are difficult to dissolve. These disadvantages are avoided by inserting the cast parts having adhering sand mold residues into a melt of 55 to 97 weight % of alkali metal hydroxide and 3 to 45 weight % of one or more fluorides of an element of the first to third main group of the periodic system of elements and/or zinc at 400.degree. to 900.degree. C. Preferably the salt melt additionally contains a boron-oxygen and/or a boron-fluorine compound.
    Type: Grant
    Filed: December 16, 1980
    Date of Patent: April 10, 1984
    Assignee: Degussa Aktiengesellschaft
    Inventors: Ulrich Baudis, Peter Biberbach, Wolfgang Weber