Patents by Inventor Peter D. Dreiske

Peter D. Dreiske has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6103544
    Abstract: A multiple color infrared detector is provided which is formed from a photodiode (13), a photoconductor (24), and an insulating layer of material (20) disposed between the photodiode (13) and the photoconductor (24). The photodiode (13) detects infrared radiation in the spectral band between about 3 .mu.m and about 5 .mu.m, and the photoconductor (24) detects infrared radiation in the spectral band between about 8 .mu.m and about 13 .mu.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: August 15, 2000
    Assignee: Raytheon TI Systems, Inc.
    Inventors: Peter D. Dreiske, Sebastian R. Borrello
  • Patent number: 5846850
    Abstract: This invention relates to a process and structure for performing a high temperature or other process on both sides of a thin slice of material or die prior to being placed onto a integrated circuit or multi-chip module. In a particular embodiment, a process and structure is given to provide for double sided interdiffusion for passivation of a Mercury Cadmium Telluride (MCT) film which is mounted to a read-out integrated circuit (ROIC) face side up in order to fabricate vertically integrated Focal Plane Arrays (FPAs) with reduced dark currents and improved performance. The process of the present invention also allows for the insertion of novel materials such as Double Layer Heterojunction (DLHJ), MBE, MOCVD, etc. in the vertical integrated approach to FPAs.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: December 8, 1998
    Assignee: Raytheon TI Systems, Inc.
    Inventors: Peter D. Dreiske, Chang-Feng Wan
  • Patent number: 5818051
    Abstract: A multiple color infrared detector is provided which is formed from a photodiode (13), a photoconductor (24), and an insulating layer of material (20) disposed between the photodiode (13) and the photoconductor (24). The photodiode (13) detects infrared radiation in the spectral band between about 3 .mu.m and about 5 .mu.m, and the photoconductor (24) detects infrared radiation in the spectral band between about 8 .mu.m and about 13 .mu.m.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: October 6, 1998
    Assignee: Raytheon TI Systems, Inc.
    Inventors: Peter D. Dreiske, Sebastian R. Borrello
  • Patent number: 5665998
    Abstract: A substantial portion of the material at the pn junction (27) of the photodiode (37, 41) having an implanted region extending to a surface thereof is selectively removed (39), leaving a very small junction region (35, 43) with the remainder of the p-type (23) and n-type (25) material of each photodiode being spaced apart or electrically isolated at what was originally the junction. In the ion implanted n-type on p-type approach, the majority of the signal is created in the implanted n-type region while the majority of the noise is generated in the p-type region. By selectively removing p-type material, n-type material or both from the pn junction of the diode or otherwise electrically isolating most of the p-type and n-type regions from each other at the pn junction and thereby minimizing the pn junction area, noise is greatly reduced without affecting the signal response of the photodiode.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: September 9, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Peter D. Dreiske, Arthur M. Turner, David I. Forehand
  • Patent number: 5593902
    Abstract: A substantial portion of the material at the pn junction (27) of the photodiode (37, 41) having an implanted region extending to a surface thereof is selectively removed (39), leaving a very small junction region (35, 43) with the remainder of the p-type (23) and n-type (25) material of each photodiode being spaced apart or electrically isolated at what was originally the junction. In the ion implanted n-type on p-type approach, the majority of the signal is created in the implanted n-type region while the majority of the noise is generated in the p-type region. By selectively removing p-type material, n-type material or both from the pn junction of the diode or otherwise electrically isolating most of the p-type and n-type regions from each other at the pn junction and thereby minimizing the pn junction area, noise is greatly reduced without affecting the signal response of the photodiode.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: January 14, 1997
    Assignee: Texas Instruments Incorporated
    Inventors: Peter D. Dreiske, Arthur M. Turner, David I. Forehand
  • Patent number: 5254850
    Abstract: A method and apparatus for improving photoconductor signal output is provided in which a photon collection aperture receives photons. Charge carriers are generated in response to the photons in a charge generation region. These charge carriers are conducted through a confinement region coupled to the charge generation region. The cross-sectional area of the confinement region is less than that of the charge generation region.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: October 19, 1993
    Assignee: Texas Instruments Incorporated
    Inventor: Peter D. Dreiske