Patents by Inventor Peter D. Honkanen

Peter D. Honkanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170131318
    Abstract: The invention relates generally to the field of automated collection and deposition of fluid, semi-solid, and solid samples of biological or chemical materials. More specifically, the invention relates to the field of microarrayers, which are devices for autonomously depositing minute droplets of biological or chemical fluid samples in ordered arrays onto substrates. The invention also relates to tissue arrayers, which are devices for the collection and deposition of solid and semi-solid tissue samples in ordered arrays. Other aspects of the invention relate to fluidics robots, which are devices for the autonomous collection, dispensing and processing of biological or chemical fluid samples. The invention improves the throughput of microarrayers, tissue arrayers, and fluidics robots by providing methods and apparatuses to precisely and repeatably load supplies into the machines.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 11, 2017
    Inventors: John Austin, Peter D. Honkanen
  • Patent number: 9527085
    Abstract: The invention relates generally to the field of automated collection and deposition of fluid, semi-solid, and solid samples of biological or chemical materials. More specifically, the invention relates to the field of microarrayers, which are devices for autonomously depositing minute droplets of biological or chemical fluid samples in ordered arrays onto substrates. The invention also relates to tissue arrayers, which are devices for the collection and deposition of solid and semi-solid tissue samples in ordered arrays. Other aspects of the invention relate to fluidics robots, which are devices for the autonomous collection, dispensing and processing of biological or chemical fluid samples. The invention improves the throughput of microarrayers, tissue arrayers, and fluidics robots by providing methods and apparatuses to precisely and repeatably load supplies into the machines.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: December 27, 2016
    Assignee: Aushon Biosystems, Inc.
    Inventors: John Austin, Peter D. Honkanen
  • Publication number: 20100068388
    Abstract: The invention relates generally to the field of automated collection and deposition of fluid, semi-solid, and solid samples of biological or chemical materials. More specifically, the invention relates to the field of microarrayers, which are devices for autonomously depositing minute droplets of biological or chemical fluid samples in ordered arrays onto substrates. The invention also relates to tissue arrayers, which are devices for the collection and deposition of solid and semi-solid tissue samples in ordered arrays. Other aspects of the invention relate to fluidics robots, which are devices for the autonomous collection, dispensing and processing of biological or chemical fluid samples. The invention improves the throughput of microarrayers, tissue arrayers, and fluidics robots by providing methods and apparatuses to precisely and repeatably load supplies into the machines.
    Type: Application
    Filed: August 5, 2009
    Publication date: March 18, 2010
    Applicant: Aushon Biosystems,Inc.
    Inventors: John Austin, Peter D. Honkanen
  • Patent number: 7585463
    Abstract: The invention relates generally to the field of automated collection and deposition of fluid, semi-solid, and solid samples of biological or chemical materials. More specifically, the invention relates to the field of microarrayers, which are devices for autonomously depositing minute droplets of biological or chemical fluid samples in ordered arrays onto substrates. The invention also relates to tissue arrayers, which are devices for the collection and deposition of solid and semi-solid tissue samples in ordered arrays. Other aspects of the invention relate to fluidics robots, which are devices for the autonomous collection, dispensing and processing of biological or chemical fluid samples. The invention improves the throughput of microarrayers, tissue arrayers, and fluidics robots by providing methods and apparatuses to precisely and repeatably load supplies into the machines.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: September 8, 2009
    Assignee: Aushon BioSystems, Inc.
    Inventors: John Austin, Peter D. Honkanen
  • Patent number: 7314595
    Abstract: A system is described for automatic retrieval of microplates from a carousel. The system includes an effector arm that retrieves a selected microplate from the carousel, a microplate retainer that receives the selected microplate from the effector arm, and a controller that directs the effector arm to the carousel for retrieval of the selected microplate and directs the effector arm to the microplate retainer so that it may receive the selected microplate. The carousel may revolve around a vertical axis. A system also is described for washing depositing elements used to spot biological materials on a substrate. Graphical user interfaces also are described for enabling a user to determine which microplates will be used to provide biological probe materials, and in what patterns those probe materials should be deposited on the substrate. The interfaces enable the user to place multiple fractions of biological materials on a same location on a substrate.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: January 1, 2008
    Assignee: Affymetrix, Inc.
    Inventors: Peter D. Honkanen, Timothy J. Woolaver, Eric E. McKenzie, David P. Bradbury, Mark R. Jones
  • Patent number: 7222025
    Abstract: Systems and methods are described for processing an emission signal, such as a fluorescent signal, to compensate for noise in an excitation beam, such as a laser beam. As one example, a scanning system is described that includes an excitation signal generator that provides an excitation signal having one or more representative excitation values representative of an excitation beam; an excitation reference provider that provides at least one excitation reference value; a normalization factor generator that compares the excitation reference value to at least one representative excitation value, thereby generating a normalization factor; and a comparison processor that adjusts at least one emission value corresponding to the at least one representative excitation value based, at least in part, on the normalization factor.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: May 22, 2007
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Peter D. Honkanen, Timothy J. Woolaver
  • Patent number: 6813567
    Abstract: Systems and methods are described for processing an emission signal, such as a fluorescent signal, to compensate for noise in an excitation beam, such as a laser beam. As one example, a scanning system is described that includes an excitation signal generator that provides an excitation signal having one or more representative excitation values representative of an excitation beam; an excitation reference provider that provides at least one excitation reference value; a normalization factor generator that compares the excitation reference value to at least one representative excitation value, thereby generating a normalization factor; and a comparison processor that adjusts at least one emission value corresponding to the at least one representative excitation value based, at least in part, on the normalization factor.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: November 2, 2004
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Peter D. Honkanen, Timothy J. Woolaver
  • Publication number: 20040151628
    Abstract: A system is described for automatic retrieval of microplates from a carousel. The system includes an effector arm that retrieves a selected microplate from the carousel, a microplate retainer that receives the selected microplate from the effector arm, and a controller that directs the effector arm to the carousel for retrieval of the selected microplate and directs the effector arm to the microplate retainer so that it may receive the selected microplate. The carousel may revolve around a vertical axis. A system also is described for washing depositing elements used to spot biological materials on a substrate. Graphical user interfaces also are described for enabling a user to determine which microplates will be used to provide biological probe materials, and in what patterns those probe materials should be deposited on the substrate. The interfaces enable the user to place multiple fractions of biological materials on a same location on a substrate.
    Type: Application
    Filed: November 1, 2003
    Publication date: August 5, 2004
    Inventors: Peter D Honkanen, Timothy J Woolaver, Eric D McKenzie, David P Bradbury, Mark R Jones
  • Publication number: 20030176980
    Abstract: Systems and methods are described for processing an emission signal, such as a fluorescent signal, to compensate for noise in an excitation beam, such as a laser beam. As one example, a scanning system is described that includes an excitation signal generator that provides an excitation signal having one or more representative excitation values representative of an excitation beam; an excitation reference provider that provides at least one excitation reference value; a normalization factor generator that compares the excitation reference value to at least one representative excitation value, thereby generating a normalization factor; and a comparison processor that adjusts at least one emission value corresponding to the at least one representative excitation value based, at least in part, on the normalization factor.
    Type: Application
    Filed: November 25, 2002
    Publication date: September 18, 2003
    Inventors: Nathan K. Weiner, Peter D. Honkanen, Timothy J. Woolaver
  • Patent number: 6490533
    Abstract: Systems and methods are described for processing an emission signal, such as a fluorescent signal, to compensate for noise in an excitation beam, such as a laser beam. As one example, a scanning system is described that includes an excitation signal generator that provides an excitation signal having one or more representative excitation values representative of an excitation beam; an excitation reference provider that provides at least one excitation reference value; a normalization factor generator that compares the excitation reference value to at least one representative excitation value, thereby generating a normalization factor; and a comparison processor that adjusts at least one emission value corresponding to the at least one representative excitation value based, at least in part, on the normalization factor.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: December 3, 2002
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Peter D. Honkanen, Timothy J. Woolaver
  • Publication number: 20020161529
    Abstract: Systems and methods are described for processing an emission signal, such as a fluorescent signal, to compensate for noise in an excitation beam, such as a laser beam. As one example, a scanning system is described that includes an excitation signal generator that provides an excitation signal having one or more representative excitation values representative of an excitation beam; an excitation reference provider that provides at least one excitation reference value; a normalization factor generator that compares the excitation reference value to at least one representative excitation value, thereby generating a normalization factor; and a comparison processor that adjusts at least one emission value corresponding to the at least one representative excitation value based, at least in part, on the normalization factor.
    Type: Application
    Filed: December 3, 2001
    Publication date: October 31, 2002
    Applicant: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Peter D. Honkanen, Timothy J. Woolaver