Patents by Inventor Peter Dan Morley

Peter Dan Morley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10175341
    Abstract: A system and apparatus configured to process search radar data based on random matrix theory. During the time that the radar receiver is listening for return target echoes, the raw data stream may be fed to an analog to digital converter to create a sample voltage file. This sample voltage file may be processed by a digital signal processor that computes the eigenvalues of a sample covariance matrix generated for each pulse duration interval. The ratio of the largest to smallest eigenvalue is determined and compared to the system noise eigenvalue ratio. The sensitivity for detecting targets over the present state of the art is expected to be an approximate enhancement factor of one thousand, due to the detection of coherent energy instead of a transmitted waveform. The increase of detection distance for same radar cross section is expected to be an approximate 5.6 enhancement factor.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 8, 2019
    Inventor: Peter Dan Morley
  • Publication number: 20170108581
    Abstract: A system and apparatus configured to process search radar data based on random matrix theory. During the time that the radar receiver is listening for return target echoes, the raw data stream may be fed to an analog to digital converter to create a sample voltage file. This sample voltage file may be processed by a digital signal processor that computes the eigenvalues of a sample covariance matrix generated for each pulse duration interval. The ratio of the largest to smallest eigenvalue is determined and compared to the system noise eigenvalue ratio. The sensitivity for detecting targets over the present state of the art is expected to be an approximate enhancement factor of one thousand, due to the detection of coherent energy instead of a transmitted waveform. The increase of detection distance for same radar cross section is expected to be an approximate 5.6 enhancement factor.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Inventor: Peter Dan MORLEY
  • Patent number: 9568591
    Abstract: A new method for processing search radar data is revealed using the mathematics of random matrix theory. During the time that the radar receiver is listening for return target echoes, the raw data stream is fed to an analog to digital converter to create a sample voltage file. This sample voltage file is processed by a digital signal processor that computes the eigenvalues of a sample covariance matrix generated for each pulse duration interval. The ratio of the largest to smallest eigenvalue is determined and compared to the system noise eigenvalue ratio. The sensitivity for detecting targets over the present state of the art is expected to be an approximate enhancement factor of one thousand, due to the detection of coherent energy instead of a transmitted waveform. The increase of detection distance for same radar cross section is expected to be an approximate 5.6 enhancement factor.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 14, 2017
    Inventor: Peter Dan Morley
  • Publication number: 20150123841
    Abstract: A new method for processing search radar data is revealed using the mathematics of random matrix theory. During the time that the radar receiver is listening for return target echos, the raw data stream is fed to an analogue to digital converter to create a sample voltage file. This sample voltage file is processed by a digital signal processor that computes the eigenvalues of a sample covariance matrix generated for each pulse duration interval. The ratio of the largest to smallest eigenvalue is determined and compared to the system noise eigenvalue ratio. The sensitivity for detecting targets over the present state of the art is expected to be an approximate enhancement factor of one thousand, due to the detection of coherent energy instead of a transmitted waveform. The increase of detection distance for same radar cross section is expected to be an approximate 5.6 enhancement factor.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 7, 2015
    Inventor: Peter Dan Morley