Patents by Inventor Peter Delfyett

Peter Delfyett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942417
    Abstract: A tunable comb generator may include a light source to generate an optical signal, an intensity modulator to modulate an intensity of the optical signal from the light source based on a RF drive signal, a frequency-locking loop (FLL) to maintain an optical frequency of the optical signal received from the intensity modulator at a target optical frequency corresponding to a resonance frequency of a periodic optical filter in the FLL, and an optoelectronic oscillator (OEO) loop. The OEO loop may include a photodetector to generate the RF drive signal based on the optical signal from the FLL, a tunable phase shifter to select a resonance frequency of the OEO loop corresponding to a harmonic of the resonance frequency of the periodic optical filter, and one or more phase modulators to generate an optical comb signal by modulating a portion of the optical signal from the FLL.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 9, 2021
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Michael Plascak, Ricardo Bustos Ramirez, Peter Delfyett
  • Publication number: 20200192185
    Abstract: A tunable comb generator may include a light source to generate an optical signal, an intensity modulator to modulate an intensity of the optical signal from the light source based on a RF drive signal, a frequency-locking loop (FLL) to maintain an optical frequency of the optical signal received from the intensity modulator at a target optical frequency corresponding to a resonance frequency of a periodic optical filter in the FLL, and an optoelectronic oscillator (OEO) loop. The OEO loop may include a photodetector to generate the RF drive signal based on the optical signal from the FLL, a tunable phase shifter to select a resonance frequency of the OEO loop corresponding to a harmonic of the resonance frequency of the periodic optical filter, and one or more phase modulators to generate an optical comb signal by modulating a portion of the optical signal from the FLL.
    Type: Application
    Filed: February 21, 2020
    Publication date: June 18, 2020
    Inventors: Michael Plascak, Ricardo Bustos Ramirez, Peter Delfyett
  • Patent number: 10585332
    Abstract: A tunable electro-optic modulation (EOM) comb generator includes a frequency locking optoelectronic oscillator (OEO) loop including RF electrical components including a phase shifter (PS1), a splitter, and optical components including an intensity modulator (IM) coupled to receive light from a light source and to couple modulated light generated to a frequency locking loop including a frequency shifter, a first phase modulator (PM1), and a periodic optical filter (POF), such as an etalon or resonator. The POF is for optically filtering the OEO loop to generate an optical output and the splitter is for generating RF electrical outputs including at least one RF output coupled to an input of the IM and another RF output coupled to an EO comb including at least a phase modulator. The EO comb combines the optical output and the another RF output to generate a broadband optical frequency comb output.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: March 10, 2020
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Michael Plascak, Ricardo Bustos Ramirez, Peter Delfyett
  • Publication number: 20190278155
    Abstract: A tunable electro-optic modulation (EOM) comb generator includes a frequency locking optoelectronic oscillator (OEO) loop including RF electrical components including a phase shifter (PS1), a splitter, and optical components including an intensity modulator (IM) coupled to receive light from a light source and to couple modulated light generated to a frequency locking loop including a frequency shifter, a first phase modulator (PM1), and a periodic optical filter (POF), such as an etalon or resonator. The POF is for optically filtering the OEO loop to generate an optical output and the splitter is for generating RF electrical outputs including at least one RF output coupled to an input of the IM and another RF output coupled to an EO comb including at least a phase modulator. The EO comb combines the optical output and the another RF output to generate a broadband optical frequency comb output.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 12, 2019
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Michael Plascak, Ricardo Bustos Ramirez, Peter Delfyett
  • Patent number: 10326251
    Abstract: A mode-locked laser (MLL) that produces ultra-low phase noise optical and RF outputs, includes two nested resonant optical cavities including an optical fiber-based cavity and an etalon, and a three bandwidth Pound-Drever-Hall (PDH) frequency stabilizer assembly incorporating three different optical bandpass filters. The optical fiber-based cavity is characterized by a free spectral range, FSRfiber, and the etalon is characterized by a free spectral range, FSRfilter, wherein FSRfilter/FSRfiber is an integer equal to or greater than 2. A method of generating ultra-low phase noise optical and RF outputs is disclosed. Optical and RF outputs have a phase noise that is less than ?100 dBc/Hz at 1 Hz and less than ?150 dBc at 10 KHz.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: June 18, 2019
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Peter Delfyett, Anthony Klee, Kristina Bagnell
  • Publication number: 20180115136
    Abstract: A mode-locked laser (MLL) that produces ultra-low phase noise optical and RF outputs, includes two nested resonant optical cavities including an optical fiber-based cavity and an etalon, and a three bandwidth Pound-Drever-Hall (PDH) frequency stabilizer assembly incorporating three different optical bandpass filters. The optical fiber-based cavity is characterized by a free spectral range, FSRfiber, and the etalon is characterized by a free spectral range, FSRfilter, wherein FSRfilter/FSRfiber is an integer equal to or greater than 2. A method of generating ultra-low phase noise optical and RF outputs is disclosed. Optical and RF outputs have a phase noise that is less than ?100 dBc/Hz at 1 Hz and less than ?150 dBc at 10 KHz.
    Type: Application
    Filed: June 7, 2016
    Publication date: April 26, 2018
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Peter Delfyett, Anthony Klee, Kristina Bagnell
  • Patent number: 9022037
    Abstract: A laser ablation method and apparatus uses a laser device to generate a pulsed laser using a laser device and to project the pulsed laser onto an ablation target to be ablated. A probe is then used to measure an indicative property of the ablation target or of the pulsed laser projected on the ablation target. A control loop is used to optimize ablation effect by generating a feedback signal according to the measured indicative property, sending the feedback signal to a control unit, and adjusting an output parameter of the pulsed laser according to the feedback signal. The measured indicative property may be a size of the laser beam spot or a material composition. The ablation, the feedback and the adjustment may be performed dynamically.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: May 5, 2015
    Assignee: Raydiance, Inc.
    Inventors: Peter Delfyett, Richard Stoltz
  • Publication number: 20110255871
    Abstract: The present invention relates to advances in the field of reconfigurable optical networks. In particular, the present invention provides improvements in the technology of light sources for use in optical networks. The optical network according to the present invention includes a single light source that can be used to emit all of the bands and channels needed for transmission. In particular, the single light source in the optical network of the present invention is a mode-locked laser.
    Type: Application
    Filed: October 21, 2010
    Publication date: October 20, 2011
    Applicants: UNIVERSITY OF CENTRAL FLORIDA, TELCORDIA TECHNOLOGIES, INC.
    Inventors: Shahab Etemad, Peter Delfyett
  • Patent number: 7929582
    Abstract: Systems and methods of generating a tunable laser beam are disclosed. An example method includes: generating coherent optical beams from a plurality of semiconductor optical amplifiers (SOAs); combining the coherent optical beams into a combined coherent optical beam; and tuning the combined beam to a selected frequency range to output a coherent optical beam having only the selected frequency range. In some embodiments, the SOAs are arranged in parallel within a resonant cavity, and each coherent optical beam has a different center wavelength that overlaps in bandwidth with another one of the coherent optical beams.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 19, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Peter Delfyett, Jannick Rolland, Panomsak Meemon, Kye-Sung Lee
  • Patent number: 7848655
    Abstract: The present invention relates to advances in the field of reconfigurable optical networks. In particular, the present invention provides improvements in the technology of light sources for use in optical networks. The optical network according to the present invention includes a single light source that can be used to emit all of the bands and channels needed for transmission. In particular, the single light source in the optical network of the present invention is a mode-locked laser.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: December 7, 2010
    Assignees: Telcordia Technologies, Inc., University of Central Florida
    Inventors: Shahab Etemad, Peter Delfyett
  • Patent number: 7800763
    Abstract: Methods, systems, apparatus and devices for using a modified PDH technique to measure the FSR of an etalon with one part per 104 precision.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 21, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Sangyoun Gee, Peter Delfyett, Sarper Ozharar, Franklyn Quinlan
  • Publication number: 20100221009
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Application
    Filed: February 22, 2010
    Publication date: September 2, 2010
    Applicants: TELCORDIA TECHNOLOGIES, INC., University of Central Florida Research Foundation, Inc. (UCFRF)
    Inventors: Shahab Etemad, Paul Toliver, Janet Lehr Jackel, Ronald Charles Menendez, Stefano Galli, Thomas Clyde Banwell, Peter Delfyett
  • Patent number: 7755755
    Abstract: A method is provided for identifying a contaminant in a gaseous space. The method includes: generating a broadband optical waveform; shaping the optical waveform to match an expected waveform for a known contaminant; and transmitting the shaped optical waveform towards an unknown contaminant. Upon receiving a reflected optical waveform from the unknown contaminant, determining whether the unknown contaminant correlates to the known contaminant based on the reflected waveform.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: July 13, 2010
    Assignees: Harris Corporation, Lucents Technologies Inc., University of Central Florida Foundations, Inc.
    Inventors: John Richard DeSalvo, Geoffrey Lynn Burdge, Bruce W. FitzGerald, Young-Kai Chen, Andreas Leven, Peter Delfyett
  • Patent number: 7729616
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: June 1, 2010
    Assignees: Telcordia Technologies, Inc., University of Central Florida
    Inventors: Shahab Etemad, Paul Toliver, Janet Lehr Jackel, Ronald Charles Menendez, Stefano Galli, Thomas Clyde Banwell, Peter Delfyett
  • Publication number: 20090323738
    Abstract: Systems and methods of generating a tunable laser beam are disclosed. An example method includes: generating coherent optical beams from a plurality of semiconductor optical amplifiers (SOAs); combining the coherent optical beams into a combined coherent optical beam; and tuning the combined beam to a selected frequency range to output a coherent optical beam having only the selected frequency range. In some embodiments, the SOAs are arranged in parallel within a resonant cavity, and each coherent optical beam has a different center wavelength that overlaps in bandwidth with another one of the coherent optical beams.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 31, 2009
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION
    Inventors: Peter Delfyett, Jannick Rolland, Panomsak Meemon, Kye-Sung Lee
  • Patent number: 7558302
    Abstract: Methods, devices and systems for generating ultrashort optical linear chirped pulses with very high power by amplifying the pulses so that their temporal duration is longer than the storage time of the amplifying medium. The additional gain factor is related to the ratio of the storage time to the stretched pulse. A preferred embodiment connects a mode locked laser source that generates optical pulses whose duration is stretched with a chirped fiber Bragg grating. Embodiments include methods, devices and systems causing an extreme chirped pulse amplifier (XCPA) effect in an oscillator.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: July 7, 2009
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Peter Delfyett, Kyungbum Kim, Bojan Resan
  • Publication number: 20080195335
    Abstract: A method is provided for identifying a contaminant in a gaseous space. The method includes: generating a broadband optical waveform; shaping the optical waveform to match an expected waveform for a known contaminant; and transmitting the shaped optical waveform towards an unknown contaminant. Upon receiving a reflected optical waveform from the unknown contaminant, determining whether the unknown contaminant correlates to the known contaminant based on the reflected waveform.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Inventors: John Richard DeSalvo, Geoffrey Lynn Burdge, Bruce W. FitzGerald, Young-Kai Chen, Andreas Leven, Peter Delfyett
  • Publication number: 20070036553
    Abstract: Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
    Type: Application
    Filed: February 18, 2005
    Publication date: February 15, 2007
    Inventors: Shahab Etemad, Paul Toliver, Janet Jackel, Ronald Menendez, Stefano Galli, Thomas Banwell, Peter Delfyett
  • Publication number: 20060084957
    Abstract: A laser ablation method and apparatus uses a laser device to generate a pulsed laser using a laser device and to project the pulsed laser onto an ablation target to be ablated. A probe is then used to measure an indicative property of the ablation target or of the pulsed laser projected on the ablation target. A control loop is used to optimize ablation effect by generating a feedback signal according to the measured indicative property, sending the feedback signal to a control unit, and adjusting an output parameter of the pulsed laser according to the feedback signal. The measured indicative property may be a size of the laser beam spot or a material composition. The ablation, the feedback and the adjustment may be performed dynamically.
    Type: Application
    Filed: September 12, 2005
    Publication date: April 20, 2006
    Inventors: Peter Delfyett, Richard Stoltz
  • Publication number: 20060064079
    Abstract: The present invention includes a method of surgical material removal from a body by optical-ablation with controlled pulse energy from an amplifier including inputting an ablation-threshold-pulse-energy-for-material-being-ablated signal; controlling the energy of a pulse and the pulse repetition rate and by knowing the type of material being removed, the system can control the removal to predetermined rate and, thus knowing the removal rate, it can know how long to run to stop at the predetermined volume.
    Type: Application
    Filed: August 11, 2004
    Publication date: March 23, 2006
    Inventors: Richard Stoltz, Peter Delfyett