Patents by Inventor Peter Dowben

Peter Dowben has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11764786
    Abstract: A magneto-electric (ME) majority gate device includes a conducting device and a plurality of ME transistors coupled to the conducting device. In one implementation, the plurality of ME transistors include a ME AND gate device with downward interface polarization, a ME-transmission gate device with downward interface polarization, and a ME-XNOR gate device. In another implementation, the plurality of ME transistors is five single-input ME-FETs.
    Type: Grant
    Filed: May 29, 2022
    Date of Patent: September 19, 2023
    Assignees: BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, INTEL CORPORATION
    Inventors: Nishtha Sharma Gaul, Andrew Marshall, Peter A. Dowben, Dmitri E. Nikonov
  • Patent number: 11757449
    Abstract: A magneto-electric (ME) XNOR logic gate device includes a conducting device; and a ME-FET coupled to the conducting device. The ME-FET can be formed of a split gate; a first gate terminal coupled to a first portion of the split gate for receiving a first input signal; a second gate terminal coupled to a second portion of the split gate for receiving a second input signal; a source terminal coupled to a ground line; and a drain terminal coupled to the conducting device.
    Type: Grant
    Filed: May 29, 2022
    Date of Patent: September 12, 2023
    Assignees: BOARD OF REGENT'S OF THE UNIVERSITY OF NEBRASKA, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, INTEL CORPORATION
    Inventors: Nishtha Sharma Gaul, Andrew Marshall, Peter A. Dowben, Dmitri E. Nikonov
  • Patent number: 11658663
    Abstract: A magneto-electric (ME) inverter includes two anti-ferromagnetic spin orbit read (AFSOR) circuit elements, each AFSOR circuit element has a CMOS inverter; and an AFSOR device with a ME base layer; a semiconductor channel layer on the ME base layer and comprising a source terminal and a drain terminal, where the source terminal is coupled to an output of the CMOS inverter; and a gate electrode on the semiconductor channel layer. The gate electrode of a second AFSOR device of the two AFSOR circuit elements is coupled to the drain terminal of a first AFSOR device of the two AFSOR circuit elements.
    Type: Grant
    Filed: May 29, 2022
    Date of Patent: May 23, 2023
    Assignees: BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, INTEL CORPORATION, Board OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Nishtha Sharma Gaul, Andrew Marshall, Peter A. Dowben, Dmitri E. Nikonov
  • Publication number: 20220294450
    Abstract: A magneto-electric (ME) inverter includes two anti-ferromagnetic spin orbit read (AFSOR) circuit elements, each AFSOR circuit element has a CMOS inverter; and an AFSOR device with a ME base layer; a semiconductor channel layer on the ME base layer and comprising a source terminal and a drain terminal, where the source terminal is coupled to an output of the CMOS inverter; and a gate electrode on the semiconductor channel layer. The gate electrode of a second AFSOR device of the two AFSOR circuit elements is coupled to the drain terminal of a first AFSOR device of the two AFSOR circuit elements.
    Type: Application
    Filed: May 29, 2022
    Publication date: September 15, 2022
    Applicants: Board of Regents of the University of Nebraska, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Intel Corporation
    Inventors: Nishtha Sharma GAUL, Andrew MARSHALL, Peter A. DOWBEN, Dmitri E. NIKONOV
  • Publication number: 20220294448
    Abstract: A magneto-electric (ME) XNOR logic gate device includes a conducting device; and a ME-FET coupled to the conducting device. The ME-FET can be formed of a split gate; a first gate terminal coupled to a first portion of the split gate for receiving a first input signal; a second gate terminal coupled to a second portion of the split gate for receiving a second input signal; a source terminal coupled to a ground line; and a drain terminal coupled to the conducting device.
    Type: Application
    Filed: May 29, 2022
    Publication date: September 15, 2022
    Applicants: Board of Regents of the University of Nebraska, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Intel Corporation
    Inventors: Nishtha Sharma GAUL, Andrew MARSHALL, Peter A. DOWBEN, Dmitri E. NIKONOV
  • Publication number: 20220294449
    Abstract: A magneto-electric (ME) majority gate device includes a conducting device and a plurality of ME transistors coupled to the conducting device. In one implementation, the plurality of ME transistors include a ME AND gate device with downward interface polarization, a ME-transmission gate device with downward interface polarization, and a ME-XNOR gate device. In another implementation, the plurality of ME transistors is five single-input ME-FETs.
    Type: Application
    Filed: May 29, 2022
    Publication date: September 15, 2022
    Applicants: Board of Regents of the University of Nebraska, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Intel Corporation
    Inventors: Nishtha Sharma GAUL, Andrew MARSHALL, Peter A. DOWBEN, Dmitri E. NIKONOV
  • Publication number: 20220238537
    Abstract: A thin film molecular memory is provided that satisfies criteria needed to make a molecular spintronic device, based on spin crossover complexes, competitive with silicon technology. These criteria include, device implementation, a low coercive voltage (less than 1V) and low write peak currents (on the order of 104 A/cm2), a device on/off ratio >10, thin film quality, the ability to “lock” the spin state (providing nonvolatility), the ability to isothermally “unlock” and switch the spin state with voltage, conductance change with spin state, room temperature and above room temperature operation, an on-state device resistivity less than 1 ?·cm, a device fast switching speed (less than 100 ps), device endurance (on the order of 1016 switches without degradation), and the ability of having a device with a transistor channel width of 10 nm or below.
    Type: Application
    Filed: January 25, 2022
    Publication date: July 28, 2022
    Inventors: Peter A. Dowben, Ruihua Cheng, Xiaoshan Xu, Alpha T. N'Diaye, Aaron Mosey, Guanhua Hao, Thilini K. Ekanayaka, Xuanyuan Jiang, Andrew J. Yost, Andrew Marshall, Azad J. Naeemi
  • Patent number: 11349480
    Abstract: Logic circuits constructed with magnetoelectric (ME) transistors are described herein. A ME logic gate device can include at least one conducting device, for example, at least one MOS transistor; and at least one ME transistor coupled to the at least one conducting device. The ME transistor can be a ME field effect transistor (ME-FET), which can be can be an anti-ferromagnetic spin-orbit read (AFSOR) device or a non-AFSOR device. The gates and logic circuits described herein can be included as standard cells in a design library. Cells of the cell library can include standard cells for a ME inverter device, a ME minority gate device, a ME majority gate device, a ME full adder, a ME XNOR device, a ME XOR device, or a combination thereof.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 31, 2022
    Assignees: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, INTEL CORPORATION
    Inventors: Nishtha Sharma Gaul, Andrew Marshall, Peter A. Dowben, Dmitri E. Nikonov
  • Publication number: 20200099379
    Abstract: Logic circuits constructed with magnetoelectric (ME) transistors are described herein. A ME logic gate device can include at least one conducting device, for example, at least one MOS transistor; and at least one ME transistor coupled to the at least one conducting device. The ME transistor can be a ME field effect transistor (ME-FET), which can be can be an anti-ferromagnetic spin-orbit read (AFSOR) device or a non-AFSOR device. The gates and logic circuits described herein can be included as standard cells in a design library. Cells of the cell library can include standard cells for a ME inverter device, a ME minority gate device, a ME majority gate device, a ME full adder, a ME XNOR device, a ME XOR device, or a combination thereof.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Applicants: Board of Regents of the University of Nebraska, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Intel Corporation
    Inventors: Nishtha SHARMA, Andrew MARSHALL, Peter A. DOWBEN, Dmitri E. NIKONOV
  • Patent number: 10361292
    Abstract: Antiferromagnetic magneto-electric spin-orbit read (AFSOR) logic devices are presented. The devices include a voltage-controlled magnetoelectric (ME) layer that switches polarization in response to an electric field from the applied voltage and a narrow channel conductor of a spin-orbit coupling (SOC) material on the ME layer. One or more sources and one or more drains, each optionally formed of ferromagnetic material, are provided on the SOC material.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: July 23, 2019
    Assignees: INTEL CORPORATION, THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dmitri E. Nikonov, Christian Binek, Xia Hong, Jonathan P. Bird, Kang L. Wang, Peter A. Dowben
  • Patent number: 10177303
    Abstract: A magneto-electric magnetic tunnel junction device (ME-MTJ) that permits direct driving of ME-MTJ devices by a prior ME-MTJ device is the unipolar magneto-electric magnetic tunnel junction (UMMTJ) device. The UMMTJ device enables full logic circuitry to be implemented without level shifting between each logic element.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 8, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Nishtha Sharma, Peter Dowben, Andrew Marshall
  • Publication number: 20180240896
    Abstract: Antiferromagnetic magneto-electric spin-orbit read (AFSOR) logic devices are presented. The devices include a voltage-controlled magnetoelectric (ME) layer that switches polarization in response to an electric field from the applied voltage and a narrow channel conductor of a spin-orbit coupling (SOC) material on the ME layer. One or more sources and one or more drains, each optionally formed of ferromagnetic material, are provided on the SOC material.
    Type: Application
    Filed: February 17, 2018
    Publication date: August 23, 2018
    Applicants: Board of Regents of the University of Nebraska, Intel Corporation, The Research Foundation for the State University of New York STOR - University at Buffalo, The Regents of the University of California
    Inventors: Dmitri E. NIKONOV, Christian BINEK, XIA HONG, Jonathan P. BIRD, Kang L. WANG, Peter A. DOWBEN
  • Publication number: 20180212141
    Abstract: A magneto-electric magnetic tunnel junction device (ME-MTJ) that permits direct driving of ME-MTJ devices by a prior ME-MTJ device is the unipolar magneto-electric magnetic tunnel junction (UMMTJ) device. The UMMTJ device enables full logic circuitry to be implemented without level shifting between each logic element.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 26, 2018
    Applicants: Board of Regents, The University of Texas System, NUtech Ventures
    Inventors: Nishtha Sharma, Peter Dowben, Andrew Marshall
  • Patent number: 9799815
    Abstract: A thermoelectric converter is provided where an n-type boron carbide element is paired with a p-type boron carbide element and placed between a eat sink and a high temperature are, such as the ocean in which a submarine operates, and the interior of that submarine, respectively. Boron carbide elements suitable for use in this invention are deposited from meta carborane (n-type) together with dopants to emphasize n-type character, such as chromocene, and orthocarborane, together with dopants to emphasize p-type character, such as 1,4 diaminobenzene to form the p-type element.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 24, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventor: Peter Dowben
  • Patent number: 9718700
    Abstract: A magnetoelectric composition of boron and chromia is provided. The boron and chromia alloy can contain boron doping of 1%-10% in place of the oxygen in the chromia. The boron-doped chromia exhibits an increased critical temperature while maintaining magnetoelectric characteristics. The composition can be fabricated by depositing chromia in the presence of borane. The boron substitutes oxygen in the chromia, enhancing the exchange energy and thereby increasing Néel temperature.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 1, 2017
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Christian Binek, Peter Dowben, Kirill Belashchenko, Aleksander Wysocki, Sai Mu, Mike Street
  • Patent number: 9620654
    Abstract: A voltage switchable coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A chrome oxide layer is formed on the cobalt by MBE at room at UHV at room temperature. There was thin cobalt oxide interface between the chrome oxide and the cobalt. Other magnetic materials may be employed. A few ML field of graphene is deposited on the chrome oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 11, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9614149
    Abstract: A coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A magnetic oxide layer is formed on the cobalt by annealing at temperatures on the order of 1000° K to provide a few monolayer thick layer. Where the gate is cobalt, the resulting magnetic oxide is Co3O4 (111). Other magnetic materials and oxides may be employed. A few ML field of graphene is deposited on the cobalt (III) oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 4, 2017
    Assignee: Quantum Devices, LLC
    Inventors: Jeffry A. Kelber, Peter Dowben
  • Patent number: 9349958
    Abstract: The invention relates to the use of zwitterionic molecules for forming a hole or electron transport layer. The preferred zwitterionic molecules of the invention are derivatives of p-benzoquinonemonoimines. The invention is useful in the field of electronic devices in particular.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 24, 2016
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE STRASBOURG, UNIVERSITY OF NEBRASKA LINCOLN
    Inventors: Bernard Doudin, Pierre Braunstein, Lucie Routaboul, Guillaume Dalmas, Zhengzheng Zhang, Peter Dowben
  • Patent number: 9324938
    Abstract: Boron carbide polymers prepared from orthocarborane icosahedra cross-linked with a moiety A wherein A is selected from the group consisting of benzene, pyridine. 1,4-diaminobenzene and mixtures thereof give positive magnetoresistance effects of 30%-80% at room temperature. The novel polymers may be doped with transitional metals to improve electronic and spin performance. These polymers may be deposited by any of a variety of techniques, and may be used in a wide variety of devices including magnetic tunnel junctions, spin-memristors and non-local spin valves.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 26, 2016
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9324960
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 26, 2016
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber