Patents by Inventor Peter F. Kurunczi

Peter F. Kurunczi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210313154
    Abstract: A system having an auxiliary plasma source, disposed proximate the workpiece, for use with an ion beam is disclosed. The auxiliary plasma source is used to create ions and radicals which drift toward the workpiece and may form a film. The ion beam is then used to provide energy so that the ions and radicals can process the workpiece. Further, various applications of the system are also disclosed. For example, the system can be used for various processes including deposition, implantation, etching, pre-treatment and post-treatment. By locating an auxiliary plasma source close to the workpiece, processes that were previously not possible may be performed. Further, two dissimilar processes, such as cleaning and implanting or implanting and passivating can be performed without removing the workpiece from the end station.
    Type: Application
    Filed: June 14, 2021
    Publication date: October 7, 2021
    Inventors: Christopher Hatem, Peter F. Kurunczi, Christopher A. Rowland, Joseph C. Olson, Anthony Renau
  • Patent number: 11069511
    Abstract: A system having an auxiliary plasma source, disposed proximate the workpiece, for use with an ion beam is disclosed. The auxiliary plasma source is used to create ions and radicals which drift toward the workpiece and may form a film. The ion beam is then used to provide energy so that the ions and radicals can process the workpiece. Further, various applications of the system are also disclosed. For example, the system can be used for various processes including deposition, implantation, etching, pre-treatment and post-treatment. By locating an auxiliary plasma source close to the workpiece, processes that were previously not possible may be performed. Further, two dissimilar processes, such as cleaning and implanting or implanting and passivating can be performed without removing the workpiece from the end station.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: July 20, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher Hatem, Peter F. Kurunczi, Christopher A. Rowland, Joseph C. Olson, Anthony Renau
  • Publication number: 20210189566
    Abstract: A ribbon beam plasma enhanced chemical vapor deposition (PECVD) system comprising a process chamber containing a platen for supporting a substrate, and a plasma source disposed adjacent the process chamber and adapted to produce free radicals in a plasma chamber, the plasma chamber having an aperture associated therewith for allowing a beam of the free radicals to exit the plasma chamber, wherein the process chamber is maintained at a first pressure and the plasma chamber is maintained at a second pressure greater than the first pressure for driving the free radicals from the plasma chamber into the process chamber.
    Type: Application
    Filed: April 5, 2020
    Publication date: June 24, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: John Hautala, Tristan Y. MA, Peter F. Kurunczi
  • Publication number: 20210166946
    Abstract: A system may include a substrate stage to support a substrate, and a plurality of beam sources. The plurality of beam sources may include an ion beam source, the ion beam source arranged to direct an ion beam to the substrate, and a radical beam source, the radical beam source arranged to direct a radical beam to the substrate. The system may include a controller configured to control the ion beam source and the radical beam source to operate independently of one another, in at least one aspect, wherein the at least one aspect includes beam composition, beam angle of incidence, and relative scanning of a beam source with respect to the substrate.
    Type: Application
    Filed: November 9, 2020
    Publication date: June 3, 2021
    Applicant: APPLIED Materials, Inc.
    Inventors: Anthony Renau, Joseph C. Olson, Peter F. Kurunczi
  • Publication number: 20200194226
    Abstract: A system may include a substrate stage, configured to support a substrate, where a main surface of the substrate defines a substrate plane. The system may include an ion source, including an extraction assembly that is oriented to direct an ion beam to the substrate along a trajectory defining a non-zero angle of incidence with respect to a perpendicular to the substrate plane. The system may include a radical source oriented to direct a radical beam to the substrate along a trajectory defining the non-zero angle of incidence with respect to a perpendicular to the substrate plane. The substrate stage may be further configured to scan the substrate along a first direction, lying with the substrate plane, while the main surface of the substrate is oriented within the substrate plane.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 18, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson, Christopher A. Rowland, James Buonodono
  • Publication number: 20200185201
    Abstract: A plasma source may include a plasma chamber, where the plasma chamber has a first side, defining a first plane and an extraction assembly, disposed adjacent to the side of the plasma chamber, where the extraction assembly includes at least two electrodes. A first electrode may be disposed immediately adjacent the side of the plasma chamber, wherein a second electrode defines a vertical displacement from the first electrode along a first direction, perpendicular to the first plane, wherein the first electrode comprises a first aperture, and the second electrode comprises a second aperture. The first aperture may define a lateral displacement from the second aperture along a second direction, parallel to the first plane, wherein the vertical displacement and the lateral displacement define a non-zero angle of inclination with respect to a perpendicular to the first plane.
    Type: Application
    Filed: November 13, 2019
    Publication date: June 11, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson
  • Publication number: 20190393019
    Abstract: A system having an auxiliary plasma source, disposed proximate the workpiece, for use with an ion beam is disclosed. The auxiliary plasma source is used to create ions and radicals which drift toward the workpiece and may form a film. The ion beam is then used to provide energy so that the ions and radicals can process the workpiece. Further, various applications of the system are also disclosed. For example, the system can be used for various processes including deposition, implantation, etching, pre-treatment and post-treatment. By locating an auxiliary plasma source close to the workpiece, processes that were previously not possible may be performed. Further, two dissimilar processes, such as cleaning and implanting or implanting and passivating can be performed without removing the workpiece from the end station.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Christopher Hatem, Peter F. Kurunczi, Christopher A. Rowland, Joseph C. Olson, Anthony Renau
  • Patent number: 10410844
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component, such as an energy purity module, having a plurality of conductive beam optics contained therein. The system further includes a power supply system for supplying a voltage and a current to the beam-line component during a cleaning mode, wherein the power supply system may include a first power plug coupled to a first subset of the plurality of conductive beam optics and a second power plug coupled to a second subset of the plurality of conductive beam optics. During a cleaning mode, the voltage and current may be simultaneously supplied and split between each of the first and second power plugs.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: September 10, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Kevin Anglin, Brant S. Binns, Peter F. Kurunczi, Jay T. Scheuer, Eric Hermanson, Alexandre Likhanskii
  • Patent number: 10290466
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 14, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 10224181
    Abstract: A processing apparatus may include a plasma chamber to house a plasma and having a main body portion comprising an electrical insulator; an extraction plate disposed along an extraction side of the plasma chamber, the extraction plate being electrically conductive and having an extraction aperture; a substrate stage disposed outside of the plasma chamber and adjacent the extraction aperture, the substrate stage being at ground potential; and an RF generator electrically coupled to the extraction plate, the RF generator establishing a positive dc self-bias voltage at the extraction plate with respect to ground potential when the plasma is present in the plasma chamber.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 5, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Costel Biloiu, Piotr Lubicki, Tyler Rockwell, Christopher Campbell, Vikram Singh, Kevin M. Daniels, Richard J. Hertel, Peter F. Kurunczi, Alexandre Likhanskii
  • Patent number: 10192727
    Abstract: An electrodynamic mass analysis system which has the capability of filtering unwanted species from an extracted ion beam without the use of a mass analyzer magnet is disclosed. The electrodynamic mass analysis system includes an ion source and an electrode disposed outside the ion source. The ion source and the electrode are biased relative to one another so as to emit pulses of ions. Each of these pulses enters a tube where each ion travels at a speed related to its mass. Thus, ions of the same mass travel in clusters through the tube. Ions reach the distal end of the tube separated temporally and spatially from one another based on their mass. The ions then enter a deflector, which is energized so as to allow the cluster of ions having the desired mass to pass through a resolving aperture disposed at the exit of the deflector.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: January 29, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Joseph C. Olson, Costel Biloiu, Alexandre Likhanskii, Peter F. Kurunczi
  • Publication number: 20180286653
    Abstract: An electrodynamic mass analysis system which has the capability of filtering unwanted species from an extracted ion beam without the use of a mass analyzer magnet is disclosed. The electrodynamic mass analysis system includes an ion source and an electrode disposed outside the ion source. The ion source and the electrode are biased relative to one another so as to emit pulses of ions. Each of these pulses enters a tube where each ion travels at a speed related to its mass. Thus, ions of the same mass travel in clusters through the tube. Ions reach the distal end of the tube separated temporally and spatially from one another based on their mass. The ions then enter a deflector, which is energized so as to allow the cluster of ions having the desired mass to pass through a resolving aperture disposed at the exit of the deflector.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Inventors: Frank Sinclair, Joseph C. Olson, Costel Biloiu, Alexandre Likhanskii, Peter F. Kurunczi
  • Publication number: 20180166261
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component, such as an energy purity module, having a plurality of conductive beam optics contained therein. The system further includes a power supply system for supplying a voltage and a current to the beam-line component during a cleaning mode, wherein the power supply system may include a first power plug coupled to a first subset of the plurality of conductive beam optics and a second power plug coupled to a second subset of the plurality of conductive beam optics. During a cleaning mode, the voltage and current may be simultaneously supplied and split between each of the first and second power plugs.
    Type: Application
    Filed: February 8, 2017
    Publication date: June 14, 2018
    Inventors: Kevin Anglin, Brant S. Binns, Peter F. Kurunczi, Jay T. Scheuer, Eric Hermanson, Alexandre Likhanskii
  • Publication number: 20180068830
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Patent number: 9865430
    Abstract: An apparatus and methods of improving the ion beam quality of a halogen-based source gas are disclosed. Unexpectedly, the introduction of a noble gas, such as argon, to an ion source chamber may increase the percentage of desirable ion species, while decreasing the amount of contaminants and halogen-containing ions. This is especially beneficial in non-mass analyzed implanters, where all ions are implanted into the workpiece. In one embodiment, a first source gas, comprising a dopant and a halogen is introduced into an ion source chamber, a second source gas comprising a hydride, and a third source gas comprising a noble gas are also introduced. The combination of these three source gases produces an ion beam having a higher percentage of pure dopant ions than would occur if the third source gas were not used.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 9, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Vikram M. Bhosle, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Svetlana B. Radovanov, Min-Sung Jeon, Peter F. Kurunczi, Christopher J. Leavitt
  • Publication number: 20170309453
    Abstract: A processing apparatus may include a plasma chamber to house a plasma and having a main body portion comprising an electrical insulator; an extraction plate disposed along an extraction side of the plasma chamber, the extraction plate being electrically conductive and having an extraction aperture; a substrate stage disposed outside of the plasma chamber and adjacent the extraction aperture, the substrate stage being at ground potential; and an RF generator electrically coupled to the extraction plate, the RF generator establishing a positive dc self-bias voltage at the extraction plate with respect to ground potential when the plasma is present in the plasma chamber.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 26, 2017
    Inventors: Costel Biloiu, Piotr Lubicki, Tyler Rockwell, Christopher Campbell, Vikram Singh, Kevin M. Daniels, Richard J. Hertel, Peter F. Kurunczi, Alexandre Likhanskii
  • Patent number: 9711316
    Abstract: A system and method of improving the performance and extending the lifetime of an ion source is disclosed. The ion source includes an ion source chamber, a suppression electrode and a ground electrode. In the processing mode, the ion source chamber may be biased to a first positive voltage, while the suppression electrode is biased to a negative voltage to attract positive ions from within the chamber through an aperture and toward the workpiece. In the cleaning mode, the ion beam is defocused so that it strikes the suppression electrode and the ground electrode. The voltages applied to the ion source chamber and the electrodes are pulsed to minimize the possibility of glitches during this cleaning mode.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: July 18, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher J. Leavitt, Peter F. Kurunczi
  • Publication number: 20170178866
    Abstract: A plasma processing apparatus may include: a plasma chamber; a power source to generate a plasma in the plasma chamber; an extraction voltage supply coupled to the plasma chamber to apply a pulsed extraction voltage between the plasma chamber and a substrate; an extraction assembly disposed along a side of the plasma chamber between the plasma chamber and the substrate, the extraction assembly having at least one aperture, the at least one aperture defining a first ion beam when the plasma is present in the plasma chamber and the pulsed extraction voltage is applied; a deflection electrode adjacent the extraction assembly; and a controller to synchronize application of the pulsed extraction voltage with application of a pulsed deflection voltage to the deflection electrode.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Svetlana B. Radovanov, Peter F. Kurunczi, Alexandre Likhanskii
  • Patent number: 9536712
    Abstract: In one embodiment, a processing apparatus includes a plasma chamber configured to house a plasma comprising first ions and second ions. The apparatus may further include a resonance RF power supply to generate a drive signal that is coupled to the plasma chamber, the drive signal having a drive frequency. The apparatus may also include a magnet assembly to generate a magnetic field in the plasma chamber, wherein the magnet assembly is configured to generate a first magnetic field strength that imparts a first cyclotron frequency for the first ions that matches the drive frequency of the drive signal, wherein the first magnetic field strength imparts a second cyclotron frequency for the second ions that does not match the drive frequency of the drive signal, and wherein the first ions are selectively driven into a chamber wall of the plasma chamber.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: January 3, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: W. Davis Lee, Svetlana Radovanov, Peter F. Kurunczi
  • Patent number: 9530615
    Abstract: A system and method of improving the performance and extending the lifetime of an ion source is disclosed. The ion source includes an ion source chamber, a suppression electrode and a ground electrode. In the processing mode, the ion source chamber may be biased to a first positive voltage, while the suppression electrode is biased to a negative voltage to attract positive ions from within the chamber through an aperture and toward the workpiece. In the cleaning mode, the ion source chamber may be grounded, while the suppression electrode is biased using a power supply having a high current capability. The voltage applied to the suppression electrode creates a plasma between the suppression electrode and the ion source chamber, and between the suppression electrode and the ground electrode.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 27, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Neil J. Bassom, Wilhelm P. Platow