Patents by Inventor Peter G. Neilson

Peter G. Neilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8964177
    Abstract: A method and apparatus for the illumination of a sample are disclosed. An imaging illumination light source is directed to pass through an absorbing/transmitting structure in order to illuminate the sample and any containing vessel. A diffuser may aid in properly dispersing the light from the imaging illumination source. A light sensitive detector such as a camera records an image therefrom. The beam from a light scattering source is directed through the sample and any containing vessel, and upon exiting the sample/vessel, impinges upon the absorbing/transmitting structure selected to absorb at the wavelength of the light scattering source. Scattered light from the sample is collected by a photo detector. Methods of use for the novel lighting system are also disclosed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: February 24, 2015
    Assignee: Wyatt Technology Corporation
    Inventors: Daniel I. Some, Michael I. Larkin, Peter G. Neilson, David N. Villalpando
  • Publication number: 20130286381
    Abstract: A method and apparatus for the illumination of a sample are disclosed. An imaging illumination light source is directed to pass through an absorbing/transmitting structure in order to illuminate the sample and any containing vessel. A diffuser may aid in properly dispersing the light from the imaging illumination source. A light sensitive detector such as a camera records an image therefrom. The beam from a light scattering source is directed through the sample and any containing vessel, and upon exiting the sample/vessel, impinges upon the absorbing/transmitting structure selected to absorb at the wavelength of the light scattering source. Scattered light from the sample is collected by a photo detector. Methods of use for the novel lighting system are also disclosed.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 31, 2013
    Applicant: Wyatt Technology Corporation
    Inventors: Daniel I. Some, Michael I. Larkin, Peter G. Neilson, David N. Villalpando
  • Patent number: 7107825
    Abstract: An electromagnetic drive causes a cantilever of a probe-based instrument to deform flexurally by transmitting a high frequency AC signal through an electromagnetic actuator located in the vicinity of the cantilever. The AC signal preferably is an RF carrier signal having a frequency that is substantially higher than the resonant frequency of the cantilever. The carrier signal may, if desired, be modulated with a lower frequency modulation signal to induce the cantilever to oscillate, preferably at resonance. Alternatively, the carrier signal may be transmitted to the electromagnetic actuator without being modulated in order to deflect the cantilever quasi-statically. Cantilever response can then be monitored either directly in response to the imposition of the electromagnetically induced deformation of the cantilever in response to probe/sample interaction to obtain measurements regarding characteristics of the sample, the environment, and/or the cantilever.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: September 19, 2006
    Assignee: Georgia Tech Research Corporation
    Inventors: F. Levent Degertekin, Chanmin Su, Peter G. Neilson
  • Publication number: 20040020279
    Abstract: An electromagnetic drive causes a cantilever of a probe-based instrument to deform flexurally by transmitting a high frequency AC signal through an electromagnetic actuator located in the vicinity of the cantilever. The AC signal preferably is an RF carrier signal having a frequency that is substantially higher than the resonant frequency of the cantilever. The carrier signal may, if desired, be modulated with a lower frequency modulation signal to induce the cantilever to oscillate, preferably at resonance. Alternatively, the carrier signal may be transmitted to the electromagnetic actuator without being modulated in order to deflect the cantilever quasi-statically. Cantilever response can then be monitored either directly in response to the imposition of the electromagnetically induced deformation of the cantilever in response to probe/sample interaction to obtain measurements regarding characteristics of the sample, the environment, and/or the cantilever.
    Type: Application
    Filed: June 6, 2003
    Publication date: February 5, 2004
    Applicant: Georgia Tech Research Corporation
    Inventors: F. Levent Degertekin, Chanmin Su, Peter G. Neilson