Patents by Inventor Peter I. Ravikovitch

Peter I. Ravikovitch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230249121
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: March 31, 2023
    Publication date: August 10, 2023
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Publication number: 20230249120
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: March 31, 2023
    Publication date: August 10, 2023
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Patent number: 11642619
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 9, 2023
    Assignees: Georgia Tech Research Corporation, EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Patent number: 11433346
    Abstract: Disclosed are processes and systems for the removal of water from a feed stream utilizing swing adsorption processes including an adsorbent bed comprising an adsorbent material which is a cationic zeolite RHO. The cationic zeolite RHO comprises at least one, preferably two, metal cations selected from Group 1 and 2 elements (new Group 1-18 IUPAC numbering). The swing adsorption processes and systems utilizing the cationic zeolite RHO have an adsorption selectivity for water and are useful in selective dehydration of commercial feed streams. The cationic zeolite RHO additionally has an exceptionally high water adsorption stability for use in feed streams with wet acid gas environments operating under cyclic swing adsorption conditions.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 6, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Barbara Carstensen, Daniel P. Leta, Peter I. Ravikovitch, Harry W. Deckman, Scott J. Weigel
  • Patent number: 11318413
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: May 3, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Publication number: 20210113952
    Abstract: Disclosed are processes and systems for the removal of water from a feed stream utilizing swing adsorption processes including an adsorbent bed comprising an adsorbent material which is a cationic zeolite RHO. The cationic zeolite RHO comprises at least one, preferably two, metal cations selected from Group 1 and 2 elements (new Group 1-18 IUPAC numbering). The swing adsorption processes and systems utilizing the cationic zeolite RHO have an adsorption selectivity for water and are useful in selective dehydration of commercial feed streams. The cationic zeolite RHO additionally has an exceptionally high water adsorption stability for use in feed streams with wet acid gas environments operating under cyclic swing adsorption conditions.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 22, 2021
    Inventors: Yu Wang, Barbara Carstensen, Daniel P. Leta, Peter I. Ravikovitch, Harry W. Deckman, Scott J. Weigel
  • Publication number: 20200338495
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Patent number: 10744449
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: August 18, 2020
    Assignees: Exxonmobil Upstream Research Company, Georgia Tech Research Corporation
    Inventors: Peter I Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Publication number: 20200179870
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Application
    Filed: February 17, 2020
    Publication date: June 11, 2020
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Patent number: 10603626
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: March 31, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Patent number: 10464817
    Abstract: EMM-26 is a novel synthetic crystalline material having a single crystalline phase with a unique T-atom connectivity and X-ray diffraction pattern which identify it as a novel material. EMM-26 has a two-dimensional pore system defined by 10-membered rings of tetrahedrally coordinated atoms having pore dimensions of ˜6.3 ?ט3.2 ?. EMM-26 may be prepared with a organic structure directing agent, such as 1,6-bis(N-methylpyrrolidinium) hexane dications and/or 1,6-bis(N-methylpiperidinium) hexane dications. EMM-26 may be used in organic compound conversion and/or sorptive processes.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 5, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Allen Burton, Karl Strohmaier, Hilda Vroman, Mobae Afeworki, Peter I. Ravikovitch, Charanjit S. Paur, Xiaodong Zou, Peng Guo, Junliang Sun
  • Patent number: 10259711
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Patent number: 10093597
    Abstract: In a process for separating one or more 3,3?-, 3,4?- and 4,4?-dimethyl biphenyl isomers, a feed comprising the isomers is contacted with an adsorbent containing a zeolite having a largest diffuse along dimension of at least 4 Angstroms. The adsorbents provide selective adsorption of 4,4?-dimethyl biphenyl.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 9, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Changyub Paek, Michael P. Lanci, Randall D. Partridge, Allen W. Burton, Peter I. Ravikovitch, Sumathy Raman
  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Publication number: 20180056235
    Abstract: The present disclosure describes the use of a specific adsorbent material in a rapid cycle swing adsorption to perform dehydration of a gaseous feed stream. The adsorbent material includes a zeolite 3A that is utilized in the dehydration process to enhance recovery of hydrocarbons.
    Type: Application
    Filed: August 4, 2017
    Publication date: March 1, 2018
    Inventors: Yu Wang, Harry W. Deckman, Ashley M. Wittrig, Karl G. Strohmaier, Daniel P. Leta, Peter I. Ravikovitch
  • Publication number: 20170305744
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Application
    Filed: March 22, 2017
    Publication date: October 26, 2017
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Patent number: 9738539
    Abstract: This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanols, the empirical formula x(M1/nXO2):yYO2:gGeO2:(1?g)SiO2 in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward W. Corcoran, Jr., Pavel Kortunov, Charanjit S. Paur, Peter I. Ravikovitch, Yu Wang, Avelino Corma Canos, Fernando Rey Garcia, Susana Valencia Valencia, Angel Cantín Sanz, Miguel Palomino Roca
  • Patent number: 9695056
    Abstract: This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanols, the empirical formula x(M1/nXO2):yYO2:gGeO2:(1?g)SiO2 in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 4, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward W. Corcoran, Jr., Pavel Kortunov, Charanjit S. Paur, Peter I. Ravikovitch, Yu Wang, Avelino Corma Canos, Fernando Rey Garcia, Susana Valencia Valencia, Angel Cantin Sanz, Miguel Palomino Roca
  • Patent number: 9688542
    Abstract: This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanols, the empirical formula x(M1/nXO2):yYO2:gGeO2:(1?g)SiO2 in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: June 27, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Edward W. Corcoran, Jr., Pavel Kortunov, Charanjit S. Paur, Peter I. Ravikovitch, Yu Wang, Avelino Corma Canos, Fernando Rey Garcia, Susana Valencia Valencia, Angel Cantin Sanz, Miguel Palomino Roca
  • Publication number: 20170136405
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 18, 2017
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti